On critically $3$-connected graphs with exactly two vertices of degree 3. Part 1
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 95-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A graph $G$ is critically $3$-connected, if $G$ is $3$-connected and for any vertex $v\in V(G)$ the graph $G-v$ isn't $3$-connected. R. C. Entringer and P. J. Slater proved that any critically $3$-connected graph contains at least two vertices of degree 3. In this paper we classify all such graphs with one additional condition: two vertices of degree 3 are adjacent. The case of nonadjacent vertices of degree 3 will be investigated in the second part of the paper, which will be published later.
@article{ZNSL_2017_464_a5,
     author = {A. V. Pastor},
     title = {On critically $3$-connected graphs with exactly two vertices of degree~3. {Part~1}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {95--111},
     year = {2017},
     volume = {464},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a5/}
}
TY  - JOUR
AU  - A. V. Pastor
TI  - On critically $3$-connected graphs with exactly two vertices of degree 3. Part 1
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 95
EP  - 111
VL  - 464
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a5/
LA  - ru
ID  - ZNSL_2017_464_a5
ER  - 
%0 Journal Article
%A A. V. Pastor
%T On critically $3$-connected graphs with exactly two vertices of degree 3. Part 1
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 95-111
%V 464
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a5/
%G ru
%F ZNSL_2017_464_a5
A. V. Pastor. On critically $3$-connected graphs with exactly two vertices of degree 3. Part 1. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 95-111. http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a5/

[1] D. V. Karpov, “Bloki v $k$-svyaznykh grafakh”, Zap. nauchn. semin. POMI, 293, 2002, 59–93 | MR | Zbl

[2] D. V. Karpov, “Razdelyayuschie mnozhestva v $k$-svyaznom grafe”, Zap. nauchn. semin. POMI, 340, 2006, 33–60 | MR | Zbl

[3] D. V. Karpov, “Derevo razbieniya dvusvyaznogo grafa”, Zap. nauchn. semin. POMI, 417, 2013, 86–105

[4] D. V. Karpov, “Derevo razrezov i minimalnyi $k$-svyaznyi graf”, Zap. nauchn. semin. POMI, 427, 2014, 22–40 | MR

[5] D. V. Karpov, A. V. Pastor, “O strukture $k$-svyaznogo grafa”, Zap. nauchn. semin. POMI, 266, 2000, 76–106 | MR | Zbl

[6] D. V. Karpov, A. V. Pastor, “Struktura razbieniya trekhsvyaznogo grafa”, Zap. nauchn. semin. POMI, 391, 2011, 90–148

[7] A. V. Pastor, “O razbienii trekhsvyaznogo grafa na tsiklicheski reberno-chetyrekhsvyaznye komponenty”, Zap. nauchn. semin. POMI, 450, 2016, 109–150 | MR

[8] G. Chartrand, A. Kaugars, D. R. Lick, “Critically $n$-connected graphs”, Proc. Amer. Math. Soc., 32 (1972), 63–68 | MR | Zbl

[9] R. C. Entringer, P. J. Slater, “A theorem on critically $3$-connected graphs”, Nanta Math., 11:2 (1978), 141–145 | MR | Zbl

[10] Y. O. Hamidoune, “On critically $h$-connected simple graphs”, Discrete Math., 32 (1980), 257–262 | DOI | MR | Zbl

[11] W. Hohberg, “The decomposition of graphs into $k$-connected components”, Discr. Math., 109 (1992), 133–145 | DOI | MR | Zbl

[12] L. Nebeský, “On induced subgraphs of a block”, J. Graph Theory, 1 (1977), 69–74 | DOI | MR | Zbl

[13] W. T. Tutte, Connectivity in graphs, Univ. Toronto Press, Toronto, 1966 | MR | Zbl

[14] H. J. Veldman, “Non-$\kappa$-critical vertices in graphs”, Discrete Math., 44 (1983), 105–110 | DOI | MR | Zbl