Framings of spatial graphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 88-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the theory of spatial graphs an analogue of the theorem on the isotopic classification of the framings of classical knots is formulated and proved.
@article{ZNSL_2017_464_a4,
     author = {V. M. Nezhinskij and Yu. V. Maslova},
     title = {Framings of spatial graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--94},
     year = {2017},
     volume = {464},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a4/}
}
TY  - JOUR
AU  - V. M. Nezhinskij
AU  - Yu. V. Maslova
TI  - Framings of spatial graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 88
EP  - 94
VL  - 464
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a4/
LA  - ru
ID  - ZNSL_2017_464_a4
ER  - 
%0 Journal Article
%A V. M. Nezhinskij
%A Yu. V. Maslova
%T Framings of spatial graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 88-94
%V 464
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a4/
%G ru
%F ZNSL_2017_464_a4
V. M. Nezhinskij; Yu. V. Maslova. Framings of spatial graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 88-94. http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a4/

[1] M. N. Gusarov, “Variatsii zauzlennykh grafov. Geometricheskaya tekhnika $n$-ekvivalentnosti”, Algebra i analiz, 12:4 (2000), 79–125 | MR | Zbl

[2] L. H. Kauffman, “Invariants of graphs in three-space”, Trans. Amer. Math. Soc., 311:2 (1989), 697–710 | DOI | MR | Zbl

[3] Yu. V. Maslova, V. M. Nezhinskii, “Osnascheniya maksimalnykh derevev parami khord”, Zap. nauch. semin. POMI, 415, 2013, 91–102

[4] V. M. Nezhinskii, Yu. V. Maslova, “Vershinno osnaschennye grafy”, Zap. nauch. semin. POMI, 415, 2013, 103–108

[5] V. M. Nezhinskii, Yu. V. Maslova, “Zatsepleniya vershinno osnaschennykh grafov”, Vestnik SPbGU. Ser. 1, 2012, no. 2, 57–60

[6] V. M. Nezhinskii, “Prostranstvennye grafy, tengly i ploskie derevya”, Algebra i analiz (to appear)

[7] V. G. Turaev, Quantum invariants of knots and $3$-manifolds, de Gruyter Studies in Mathematics, 18, Walter de Gruyter, Berlin, 1994, x+588 pp. | MR | Zbl