Counting unlabelled chord diagrams of maximal genus
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 77-87

Voir la notice de l'article provenant de la source Math-Net.Ru

Maximal chord diagrams up to all isomorphisms are enumerated. The enumerating formula is based on a bijection between rooted one-vertex one-face maps on locally orientable surfaces and a certain class of symmetric chord diagrams. This result extends the one of Cori and Marcus regarding maximal chord diagrams enumerated up to rotations.
@article{ZNSL_2017_464_a3,
     author = {E. C. Krasko},
     title = {Counting unlabelled chord diagrams of maximal genus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {77--87},
     publisher = {mathdoc},
     volume = {464},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a3/}
}
TY  - JOUR
AU  - E. C. Krasko
TI  - Counting unlabelled chord diagrams of maximal genus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 77
EP  - 87
VL  - 464
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a3/
LA  - ru
ID  - ZNSL_2017_464_a3
ER  - 
%0 Journal Article
%A E. C. Krasko
%T Counting unlabelled chord diagrams of maximal genus
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 77-87
%V 464
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a3/
%G ru
%F ZNSL_2017_464_a3
E. C. Krasko. Counting unlabelled chord diagrams of maximal genus. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 77-87. http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a3/