Counting unlabelled chord diagrams of maximal genus
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 77-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Maximal chord diagrams up to all isomorphisms are enumerated. The enumerating formula is based on a bijection between rooted one-vertex one-face maps on locally orientable surfaces and a certain class of symmetric chord diagrams. This result extends the one of Cori and Marcus regarding maximal chord diagrams enumerated up to rotations.
@article{ZNSL_2017_464_a3,
     author = {E. C. Krasko},
     title = {Counting unlabelled chord diagrams of maximal genus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {77--87},
     year = {2017},
     volume = {464},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a3/}
}
TY  - JOUR
AU  - E. C. Krasko
TI  - Counting unlabelled chord diagrams of maximal genus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 77
EP  - 87
VL  - 464
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a3/
LA  - ru
ID  - ZNSL_2017_464_a3
ER  - 
%0 Journal Article
%A E. C. Krasko
%T Counting unlabelled chord diagrams of maximal genus
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 77-87
%V 464
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a3/
%G ru
%F ZNSL_2017_464_a3
E. C. Krasko. Counting unlabelled chord diagrams of maximal genus. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 77-87. http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a3/

[1] T. R. S. Walsh, A. B. Lehman, “Counting rooted maps by genus, I”, J. Combin. Theory Ser. B, 13 (1972), 192–218 | DOI | MR | Zbl

[2] J. Harer, D. Zagier, “The euler characteristic of the moduli space of curves”, Invent. Math., 85 (1986), 457–485 | DOI | MR | Zbl

[3] R. Cori, M. Marcus, “Counting non-isomorphic chord diagrams”, Theoretical Computer Science, 204 (1998), 55–73 | DOI | MR | Zbl

[4] R. C. Read, “On general dissections of a polygon”, Aeq. Math., 18 (1978), 370–388 | DOI | MR | Zbl

[5] N. C. Wormald, “Counting unrooted planar maps”, Discrete Math., 36 (1981), 205–225 | DOI | MR | Zbl

[6] V. A. Liskovets, “A reductive technique for enumerating non-isomorphic planar maps”, Discrete Mathematics, 156 (1996), 197–217 | DOI | MR | Zbl

[7] M. Ledoux, “A recursion formula for the moments of the gaussian orthogonal ensemble”, Annales de l'Institut Henri Poincaré – Probabilités et Statistiques, 45:3 (2009), 754–769 | DOI | MR | Zbl