Counting unlabelled chord diagrams of maximal genus
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 77-87
Voir la notice de l'article provenant de la source Math-Net.Ru
Maximal chord diagrams up to all isomorphisms are enumerated. The enumerating formula is based on a bijection between rooted one-vertex one-face maps on locally orientable surfaces and a certain class of symmetric chord diagrams. This result extends the one of Cori and Marcus regarding maximal chord diagrams enumerated up to rotations.
@article{ZNSL_2017_464_a3,
author = {E. C. Krasko},
title = {Counting unlabelled chord diagrams of maximal genus},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {77--87},
publisher = {mathdoc},
volume = {464},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a3/}
}
E. C. Krasko. Counting unlabelled chord diagrams of maximal genus. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 77-87. http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a3/