Voir la notice du chapitre de livre
@article{ZNSL_2017_464_a2,
author = {K. Kokhas and A. Latyshev},
title = {For which graphs sages can guess a~color of at least one hat},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {48--76},
year = {2017},
volume = {464},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a2/}
}
K. Kokhas; A. Latyshev. For which graphs sages can guess a color of at least one hat. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 48-76. http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a2/
[1] S. Butler, M. T. Hajiaghayi, R. D. Kleinberg, T. Leighton, “Hat guessing games”, SIAM review, 51 (2009), 399—413 | DOI | MR | Zbl
[2] T. Ebert, Applications of Recursive Operators to Randomness and Complexity, University of California, Santa Barbara, 1998 | MR
[3] M. Gardner, The Scientific American book of mathematical puzzles diversions, Simon and Schuster, 1959
[4] M. Krzywkowski, “On the hat problem, its variations, and their applications”, Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica, 9:1 (2010), 55–67 | MR | Zbl
[5] W. W. Szczechla, “The three-colour hat guessing game on the cycle graphs”, Electronic J. of Combinatorics, 24:1 (2017), #P1.37 | MR | Zbl