On the relationship between multiplicities of the matrix spectrum and signs of components of its eigenvector in a tree-like structure
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 5-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Tree-like structure parametric representation of an eigenspace corresponding to an eigenvalue $\lambda$ of a matrix $G$ is obtained in the case where a non-zero main basic minor of the matrix $G-\lambda E$ exists. If the algebraic and geometric multiplicities of $\lambda$ are equal, such a minor always exists. Coefficients at the degrees of spectral parameter are sums of summands having the same sign. If there is no non-zero main basic minor, the tree-like form does not allow to represent coefficients as sums with the same signs with the only exception – the case of eigenvalue of geometric multiplicity 1.
@article{ZNSL_2017_464_a0,
     author = {V. A. Buslov},
     title = {On the relationship between multiplicities of the matrix spectrum and signs of components of its eigenvector in a~tree-like structure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--25},
     year = {2017},
     volume = {464},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a0/}
}
TY  - JOUR
AU  - V. A. Buslov
TI  - On the relationship between multiplicities of the matrix spectrum and signs of components of its eigenvector in a tree-like structure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 5
EP  - 25
VL  - 464
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a0/
LA  - ru
ID  - ZNSL_2017_464_a0
ER  - 
%0 Journal Article
%A V. A. Buslov
%T On the relationship between multiplicities of the matrix spectrum and signs of components of its eigenvector in a tree-like structure
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 5-25
%V 464
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a0/
%G ru
%F ZNSL_2017_464_a0
V. A. Buslov. On the relationship between multiplicities of the matrix spectrum and signs of components of its eigenvector in a tree-like structure. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IX, Tome 464 (2017), pp. 5-25. http://geodesic.mathdoc.fr/item/ZNSL_2017_464_a0/

[1] D. Cvetkovič , M. Doob, H. Sachs, Spectra of Graphs: Theory and Application, VEB Deutscher Verlag der Wissenschlaften, Berlin, 1980 | MR | Zbl

[2] G. Kirchhoff, “Über Die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird”, Ann. Phys. Chem., 72 (1847), 497–508 | DOI

[3] S. Chaiken, “A combinatorial proof of the all minors matrix tree theorem”, SIAM J. Algebraic Disc. Meth., 3 (1982), 319–329 | DOI | MR | Zbl

[4] J. W. Moon, “Some determinant expansions and the matrix-tree theorem”, Discrete Math., 124 (1994), 163–171 | DOI | MR | Zbl

[5] V. A. Buslov, “O koeffitsientakh kharakteristicheskogo mnogochlena laplasiana vzveshennogo orientirovannogo grafa i teoreme o vsekh minorakh”, Zap. nauchn. semin. POMI, 427, 2014, 5–21 | MR

[6] V. A. Buslov, “O kharakteristicheskom mnogochlene i sobstvennykh vektorakh v terminakh drevovidnoi struktury orgrafa”, Zap. nauchn. semin. POMI, 450, 2016, 14–36 | MR

[7] A. D. Venttsel , M. I. Freidlin, Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, M., 1979

[8] V. A. Buslov, K. A. Makarov, “Ierarkhiya masshtabov vremeni pri maloi diffuzii”, TMF, 76:2 (1988), 219–230 | MR | Zbl

[9] V. A. Buslov, K. A. Makarov, “Vremena zhizni i nizshie sobstvennye znacheniya operatora maloi diffuzii”, Mat. zametki, 51:1 (1992), 20–31 | MR | Zbl

[10] A. Kelmans, I. Pak, A. Postnikov, Tree and forest volumes of graphs, Rutcor Research Report 47–99, Rutgers Center for Operations Research, Rutgers University, – Piscataway, December 1999

[11] P. Yu. Chebotarëv, R. P. Agaev, Matrichnaya teorema o lesakh i laplasovskie matritsy orgrafov, LAP LAMBERT Academic Publising GmbH Co.Kg, 2011