Voir la notice du chapitre de livre
@article{ZNSL_2017_463_a9,
author = {Kh. D. Ikramov},
title = {Binormal matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {132--141},
year = {2017},
volume = {463},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a9/}
}
Kh. D. Ikramov. Binormal matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 132-141. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a9/
[1] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991 | MR | Zbl
[2] R. Bhatia, R. A. Horn, F. Kittaneh, “Normal approximants to binormal operators”, Linear Algebra Appl., 147 (1991), 167–179 | DOI | MR
[3] M. R. Embry, “Conditions implying normality in Hilbert space”, Pacific J. Math., 18 (1966), 457–460 | DOI | MR | Zbl
[4] M. R. Embry, “Similarities involving normal operators on Hilbert space”, Pacific J. Math., 35 (1970), 331–336 | DOI | MR | Zbl
[5] S. L. Campbell, “Linear operators for which $T^*T$ and $TT^*$ commute”, Proc. Amer. Math. Soc., 34 (1972), 177–180 | MR | Zbl
[6] S. L. Campbell, “Linear operators for which $T^*T$ and $TT^*$ commute (II)”, Pacific J. Math., 53 (1974), 355–361 | DOI | MR | Zbl