Binormal matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 132-141
Voir la notice de l'article provenant de la source Math-Net.Ru
A square complex matrix $A$ is said to be binormal if the associated matrices $A^*A$ and $AA^*$ commute. This matrix class yields a meaningful finite-dimensional extension for the concept of normality. The paper can be regarded as a survey of the properties of binormal matrices.
@article{ZNSL_2017_463_a9,
author = {Kh. D. Ikramov},
title = {Binormal matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {132--141},
publisher = {mathdoc},
volume = {463},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a9/}
}
Kh. D. Ikramov. Binormal matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 132-141. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a9/