Binormal matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 132-141
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A square complex matrix $A$ is said to be binormal if the associated matrices $A^*A$ and $AA^*$ commute. This matrix class yields a meaningful finite-dimensional extension for the concept of normality. The paper can be regarded as a survey of the properties of binormal matrices.
@article{ZNSL_2017_463_a9,
     author = {Kh. D. Ikramov},
     title = {Binormal matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {132--141},
     year = {2017},
     volume = {463},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a9/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Binormal matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 132
EP  - 141
VL  - 463
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a9/
LA  - ru
ID  - ZNSL_2017_463_a9
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Binormal matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 132-141
%V 463
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a9/
%G ru
%F ZNSL_2017_463_a9
Kh. D. Ikramov. Binormal matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 132-141. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a9/

[1] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991 | MR | Zbl

[2] R. Bhatia, R. A. Horn, F. Kittaneh, “Normal approximants to binormal operators”, Linear Algebra Appl., 147 (1991), 167–179 | DOI | MR

[3] M. R. Embry, “Conditions implying normality in Hilbert space”, Pacific J. Math., 18 (1966), 457–460 | DOI | MR | Zbl

[4] M. R. Embry, “Similarities involving normal operators on Hilbert space”, Pacific J. Math., 35 (1970), 331–336 | DOI | MR | Zbl

[5] S. L. Campbell, “Linear operators for which $T^*T$ and $TT^*$ commute”, Proc. Amer. Math. Soc., 34 (1972), 177–180 | MR | Zbl

[6] S. L. Campbell, “Linear operators for which $T^*T$ and $TT^*$ commute (II)”, Pacific J. Math., 53 (1974), 355–361 | DOI | MR | Zbl