Adaptive wavelet decomposition of matrix flows
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 112-131
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Adaptive algorithms for constructing spline-wavelet decompositions of matrix flows from a linear space of matrices over a normed field are presented. The algorithms suggested provides for an a priori prescribed estimate of the deviation of the basic flow from the original one. Comparative bounds of the volumes of data in the basic flow for various irregularity characteristics of the original flow are obtained in the cases of pseudouniform and adaptive meshes. Limit characteristics of the above-mentioned volumes are given in the cases where the original flow is generated by differentiable functions.
@article{ZNSL_2017_463_a8,
     author = {Yu. K. Dem'yanovich and V. G. Degtyarev and N. A. Lebedinskaya},
     title = {Adaptive wavelet decomposition of matrix flows},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {112--131},
     year = {2017},
     volume = {463},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a8/}
}
TY  - JOUR
AU  - Yu. K. Dem'yanovich
AU  - V. G. Degtyarev
AU  - N. A. Lebedinskaya
TI  - Adaptive wavelet decomposition of matrix flows
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 112
EP  - 131
VL  - 463
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a8/
LA  - ru
ID  - ZNSL_2017_463_a8
ER  - 
%0 Journal Article
%A Yu. K. Dem'yanovich
%A V. G. Degtyarev
%A N. A. Lebedinskaya
%T Adaptive wavelet decomposition of matrix flows
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 112-131
%V 463
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a8/
%G ru
%F ZNSL_2017_463_a8
Yu. K. Dem'yanovich; V. G. Degtyarev; N. A. Lebedinskaya. Adaptive wavelet decomposition of matrix flows. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 112-131. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a8/

[2] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999 | MR | Zbl

[3] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR

[4] Yu. K. Demyanovich, Teoriya splain-vspleskov, Izd-vo SPbGU, SPb., 2013

[5] S. Albeverio, S. Evdokimov, M. Skopina, “$p$-adic multiresolution analysis and wavelet frames”, J. Fourier Anal. Appl., 16:5 (2010), 693–714 | DOI | MR | Zbl

[6] Yu. K. Demyanovich, A. Yu. Ponomareva, “Adaptivnaya splain-vspleskovaya obrabotka diskretnogo potoka”, Probl. mat. analiza, 81, 2015, 29–46 | Zbl

[7] Yu. K. Demyanovich, A. S. Ponomarev, “O realizatsii splain-vspleskovogo razlozheniya pervogo poryadka”, Zap. nauchn. semin. POMI, 453, 2016, 33–73 | MR

[8] Yu. K. Dem'yanovich, “On embedding and extended smoothness of spline spaces”, Far East J. Math. Sci. (FJMS), 102:9 (2017), 2025–2052 | DOI