On the determinantal range of  matrix products
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 94-111
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let matrices $A,C\in M_n$ have eigenvalues $\alpha_1,\dots,\alpha_n$ and $\gamma_1,\dots,\gamma_n$, respectively. The set $D_C(A)=\{\det(A-UCU^*)\colon U\in M_n,\ U^*U=I_n\}$ of complex numbers is called the $C$-determinantal range of $A$. The paper studies various conditions under which the relation $D_C(RS)=D_C(SR)$ holds for some matrices $R$ and $S$.
			
            
            
            
          
        
      @article{ZNSL_2017_463_a7,
     author = {A. Guterman and G. Soares},
     title = {On the determinantal range of  matrix products},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {94--111},
     publisher = {mathdoc},
     volume = {463},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a7/}
}
                      
                      
                    A. Guterman; G. Soares. On the determinantal range of matrix products. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 94-111. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a7/
