On the determinantal range of matrix products
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 94-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let matrices $A,C\in M_n$ have eigenvalues $\alpha_1,\dots,\alpha_n$ and $\gamma_1,\dots,\gamma_n$, respectively. The set $D_C(A)=\{\det(A-UCU^*)\colon U\in M_n,\ U^*U=I_n\}$ of complex numbers is called the $C$-determinantal range of $A$. The paper studies various conditions under which the relation $D_C(RS)=D_C(SR)$ holds for some matrices $R$ and $S$.
@article{ZNSL_2017_463_a7,
     author = {A. Guterman and G. Soares},
     title = {On the determinantal range of matrix products},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {94--111},
     year = {2017},
     volume = {463},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a7/}
}
TY  - JOUR
AU  - A. Guterman
AU  - G. Soares
TI  - On the determinantal range of matrix products
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 94
EP  - 111
VL  - 463
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a7/
LA  - ru
ID  - ZNSL_2017_463_a7
ER  - 
%0 Journal Article
%A A. Guterman
%A G. Soares
%T On the determinantal range of matrix products
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 94-111
%V 463
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a7/
%G ru
%F ZNSL_2017_463_a7
A. Guterman; G. Soares. On the determinantal range of matrix products. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 94-111. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a7/

[1] N. Bebiano, “Some analogies between the $c$-numerical range and a certain variation of this concept”, Linear Algebra Appl., 81 (1986), 47–54 | DOI | MR | Zbl

[2] N. Bebiano, Yiu-Tung Poon, J. da Providência, “On $C$-det spectral and $C$-det convex matrices”, Linear Multilinear Algebra, 23 (1988), 343–351 | DOI | MR | Zbl

[3] N. Bebiano, J. K. Merikoski, J. da Providência, “On a conjecture of G.N. de Oliveira on determinants”, Linear Multilinear Algebra, 20 (1987), 167–170 | DOI | MR | Zbl

[4] N. Bebiano, A. Kovačec, J. da Providência, “The validity of the Marcus–Oliveira conjecture for essentially Hermitian matrices”, Linear Algebra Appl., 197–198 (1994), 411–427 | DOI | MR | Zbl

[5] N. Bebiano, G. Soares, “Three observations on the determinantal range”, Linear Algebra Appl., 401 (2005), 211–220 | DOI | MR | Zbl

[6] W.-S. Cheung, N.-K. Tsing, “The $C$-numerical range of matrices is star-shapped”, Linear Multilinear Algebra, 41 (1996), 245–250 | DOI | MR | Zbl

[7] M.-T. Chien, C.-L. Ko, H. Nakazato, “On the numerical ranges of matrix products”, Appl. Math. Letters, 23 (2010), 732–737 | DOI | MR | Zbl

[8] S. W. Drury, B. Cload, “On the determinantal conjecture of Marcus and de Oliveira”, Linear Algebra Appl., 177 (1992), 105–109 | DOI | MR | Zbl

[9] M. Fiedler, “Bounds for the determinant of the sum of hermitian matrices”, Proc. Amer. Math. Soc., 30 (1971), 27–31 | DOI | MR | Zbl

[10] P. Gawron, Z. Puchala, J. A. Miszczak, L. Skowronek, K. Zyczkowski, “Restricted numerical range: a versatile tool in the theory of quantum information”, J. Math. Physics, 51 (2010), 102204, 24 pp. | DOI | MR | Zbl

[11] M. Goldberg, E. G. Straus, “Elementary inclusion relations of generalized numerical ranges”, Linear Algebra Appl., 18 (1977), 1–24 | DOI | MR | Zbl

[12] A. Guterman, R. Lemos, G. Soares, “Extremal case in Marcus–Oliveira conjecture and beyond”, Linear Multilinear Algebra, 61:9 (2013), 1206–1222 | DOI | MR | Zbl

[13] F. Hausdorff, “Der Wertvorrat einer Bilinearform”, Math. Z., 3 (1919), 314–316 | DOI | MR | Zbl

[14] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985 | MR | Zbl

[15] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991 | MR | Zbl

[16] A. Kovačec, “On a conjecture of Marcus and de Oliveira”, Linear Algebra Appl., 201 (1994), 91–97 | DOI | MR | Zbl

[17] Chi-Kwong Li, “The $C$-convex matrices”, Linear Multilinear Algebra, 21 (1987), 303–312 | DOI | MR | Zbl

[18] Chi-Kwong Li, “$C$-numerical ranges and $C$-numerical radii”, Linear Multilinear Algebra, 37:1–3 (1994), 51–82 | MR | Zbl

[19] C.-K. Li, Y.-T. Poon, N.-S. Sze, “Ranks and determinants of the sum of matrices from unitary orbits”, Linear Multilinear Algebra, 56:1–2 (2008), 105–130 | MR | Zbl

[20] M. Marcus, “Derivations, Plücker relations and the numerical range”, Indiana Univ. Math. J., 22 (1973), 1137–1149 | DOI | MR | Zbl

[21] F. D. Murnaghan, “On the field of values of a square matrix”, Proc. Nat. Acad. Sci., 18 (1932), 246–248 | DOI | Zbl

[22] J. K. Merikoski, A. Virtanen, “Some notes on de Oliveira's determinantal conjecture”, Linear Algebra Appl., 121 (1989), 345–352 | DOI | MR | Zbl

[23] G. N. de Oliveira, “Normal matrices (Research Problem)”, Linear Multilinear Algebra, 12 (1982), 153–154 | DOI | MR

[24] O. Toeplitz, “Das algebraische Analogon zu einem Satz von Fejer”, Math. Z., 2 (1918), 187–197 | DOI | MR | Zbl

[25] R. Westwick, “A theorem on numerical ranges”, Linear Multilinear Algebra, 2 (1975), 311–315 | DOI | MR | Zbl