Orthogonality graphs of matrices over skew fields
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 81-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to studying the orthogonality graph of the matrix ring over a skew field. It is shown that for $n\geq3$ the orthogonality graph of the $n\times n$ matrix ring $M_n(\mathbb D)$ over a skew field $\mathbb D$ is connected and has diameter $4$ for an arbitrary skew field $\mathbb D$. If $n=2$, then the graph of the ring $M_n(\mathbb D)$ is a disjoint union of connected components of diameters $1$ and $2$. As a corollary, we obtain related results on the orthogonality graphs of simple Artinian rings.
@article{ZNSL_2017_463_a6,
     author = {A. E. Guterman and O. V. Markova},
     title = {Orthogonality graphs of matrices over skew fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {81--93},
     year = {2017},
     volume = {463},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a6/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - O. V. Markova
TI  - Orthogonality graphs of matrices over skew fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 81
EP  - 93
VL  - 463
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a6/
LA  - ru
ID  - ZNSL_2017_463_a6
ER  - 
%0 Journal Article
%A A. E. Guterman
%A O. V. Markova
%T Orthogonality graphs of matrices over skew fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 81-93
%V 463
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a6/
%G ru
%F ZNSL_2017_463_a6
A. E. Guterman; O. V. Markova. Orthogonality graphs of matrices over skew fields. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 81-93. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a6/

[1] S. Akbari, M. Ghandehari, M. Hadian, A. Mohammadian, “On commuting graphs of semisimple rings”, Linear Algebra Appl., 390 (2004), 345–355 | DOI | MR | Zbl

[2] S. Akbari, A. Mohammadian, “On the zero-divisor graph of a commutative ring”, J. Algebra, 274 (2004), 847–855 | DOI | MR | Zbl

[3] S. Akbari, A. Mohammadian, “Zero-divisor graphs of non-commutative rings”, J. Algebra, 296 (2006), 462–479 | DOI | MR | Zbl

[4] S. Akbari, A. Mohammadian, H. Radjavi, P. Raja, “On the diameters of commuting graphs”, Linear Algebra Appl., 418 (2006), 161–176 | DOI | MR | Zbl

[5] D. F. Anderson, P. S. Livingston, “The zero-divisor graph of a commutative ring”, J. Algebra, 217 (1999), 434–447 | DOI | MR | Zbl

[6] E. Artin, Geometricheskaya algebra, Nauka, M., 1969 | MR

[7] B. R. Bakhadly, A. E. Guterman, O. V. Markova, “Grafy, opredelennye ortogonalnostyu”, Zap. nauchn. semin. POMI, 428, 2014, 49–80

[8] K. I. Beidar, A. V. Mikhalëv, “Ortogonalnaya polnota i algebraicheskie sistemy”, UMN, 40:6 (1985), 79–115 | MR | Zbl

[9] K. I. Beidar, A. V. Mikhalëv, “Ortogonalnaya polnota v teorii kolets”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 4, 1993, 1–44

[10] F. Kharari, Teoriya grafov, Mir, M., 1973 | MR

[11] I. N. Kherstein, Nekommutativnye koltsa, Mir, M., 1972 | MR

[12] A. E. Guterman, M. A. Efimov, “Monotonnye otobrazheniya matrits indeksa 1”, Zap. nauchn. semin. POMI, 405, 2012, 67–96 | MR

[13] P. G. Ovchinnikov, “Automorphisms of the poset of skew projections”, J. Funct. Analysis, 115 (1993), 184–189 | DOI | MR | Zbl

[14] P. Šemrl, “Order-preserving maps on the poset of idempotent matrices”, Acta Sci. Math. (Szeged), 69 (2003), 481–490 | MR | Zbl