Partial orders based on inverses along elements
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 58-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper introduces and investigates partial orders that are finer than the minus partial order and are based on inverses along an element and other specific outer inverses. It turns out that in this way a number of classical partial orders can be equivalently defined.
@article{ZNSL_2017_463_a5,
     author = {A. Guterman and X. Mary and P. Shteyner},
     title = {Partial orders based on inverses along elements},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {58--80},
     year = {2017},
     volume = {463},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a5/}
}
TY  - JOUR
AU  - A. Guterman
AU  - X. Mary
AU  - P. Shteyner
TI  - Partial orders based on inverses along elements
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 58
EP  - 80
VL  - 463
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a5/
LA  - ru
ID  - ZNSL_2017_463_a5
ER  - 
%0 Journal Article
%A A. Guterman
%A X. Mary
%A P. Shteyner
%T Partial orders based on inverses along elements
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 58-80
%V 463
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a5/
%G ru
%F ZNSL_2017_463_a5
A. Guterman; X. Mary; P. Shteyner. Partial orders based on inverses along elements. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 58-80. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a5/

[1] J. K. Baksalary, F. Pukelsheim, G. P. H. Styan, “Some properties of matrix partial orderings”, Linear Algebra Appl., 119 (1989), 57–85 | DOI | MR | Zbl

[2] A. Ben Israel, T. N. E. Greville, Generalized Inverses, Theory and Applications, 2nd ed., Springer, New York, 2003 | MR | Zbl

[3] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, v. I, Mathematical Surveys, 7, American Mathematical Society, Providence, R.I., 1961 | MR | Zbl

[4] R. E. Cline, R. E. Funderlic, “The rank of a difference of matrices and associated generalized inverses”, Linear Algebra Appl., 24 (1979), 185–215 | DOI | MR | Zbl

[5] M. P. Drazin, “Pseudo-inverse in associative rings and semigroups”, Amer. Math. Monthly, 65 (1958), 506–514 | DOI | MR | Zbl

[6] M. P. Drazin, “A class of outer generalized inverses”, Linear Algebra Appl., 436:7 (2012), 1909–1923 | DOI | MR | Zbl

[7] M. P. Drazin, “A partial order in completely regular semigroups”, J. Algebra, 98:2 (1986), 362–374 | DOI | MR | Zbl

[8] M. P. Drazin, “Natural structures on semigroups with involution”, Bull. Amer. Math. Soc., 84:1 (1978), 139–141 | DOI | MR | Zbl

[9] J. A. Green, “On the structure of semigroups”, Ann. Math., 54:1 (1951), 163–172 | DOI | MR | Zbl

[10] R. E. Hartwig, “How to partially order regular elements”, Math. Japon., 25 (1980), 1–13 | MR | Zbl

[11] R. E. Hartwig, “Block generalized inverses”, Arch. Rational Mech. Anal., 61:3 (1976), 197–251 | DOI | MR | Zbl

[12] R. E. Hartwig, R. Loewy, “Maximal elements under the three partial orders”, Linear Algebra Appl., 175 (1992), 39–61 | DOI | MR | Zbl

[13] R. E. Hartwig, G. P. H. Styan, “On some characterizations of the “star” partial ordering and rank-subtractivity”, Linear Algebra Appl., 82 (1986), 145–161 | DOI | MR | Zbl

[14] A. Hernandez, M. Lattanzi, N. Thome, “On a partial order defined by the weighted Moore-Penrose inverse”, Appl. Math. Comput., 219:14 (2013), 7310–7318 | MR | Zbl

[15] J. M. Howie, Fundamentals of Semigroup Theory, London Mathematical Society Monographs, New Series, 12, Oxford Science Publications, 1995 | MR | Zbl

[16] S. K. Mitra, P. Bhimasankaram, S. B. Malik, Matrix Partial Orders, Shorted Operators and Applications, World Scientific Publishing Company, 2010 | MR | Zbl

[17] X. Mary, “On generalized inverses and Green's relations”, Linear Algebra Appl., 434:8 (2011), 1836–1844 | DOI | MR | Zbl

[18] X. Mary, P. Patricio, “Generalized invertibilty modulo $\mathcal H$ in semigroups and rings”, Linear Multilinear Algebra, 61:8 (2013), 1130–1135 | DOI | MR | Zbl

[19] H. Mitsch, “A natural partial order on semigroups”, Proc. Amer. Math. Soc., 97:3 (1986), 384–388 | DOI | MR | Zbl

[20] S. K. Mitra, “On group inverses and the sharp order”, Linear Algebra Appl., 92 (1987), 17–37 | DOI | MR | Zbl

[21] S. K. Mitra, R. E. Hartwig, “Partial orders based on outer inverse”, Linear Algebra Appl., 176 (1992), 3–20 | DOI | MR | Zbl

[22] S. K. Jain, S. K. Mitra, H. J. Werner, “Extensions of G-based matrix partial orders”, SIAM J. Matrix Anal. Appl., 17:4 (1996), 834–850 | DOI | MR | Zbl

[23] S. K. Mitra, “Matrix partial order through generalized inverses: unified theory”, Linear Algebra Appl., 148 (1991), 237–263 | DOI | MR | Zbl

[24] W. D. Munn, “Pseudo-inverses in Semigroups”, Math. Proc. Cambridge Phil. Soc., 57:2 (1961), 247–250 | DOI | MR | Zbl

[25] K. Nambooripad, “The natural partial order on a regular semigroup”, Proc. Edinburgh Math. Soc., 23 (1980), 249–260 | DOI | MR | Zbl

[26] M. Petrich, “Certain partial orders on semigroups”, Czechoslovak Math. J., 51 (2001), 415–432 | DOI | MR | Zbl

[27] D. S. Rakic, D. S. Djordjevic, “Partial orders in rings based on generalized inverses – unified theory”, Linear Algebra Appl., 471 (2015), 203–223 | DOI | MR | Zbl

[28] D. S. Rakic, D. S. Djordjevic, “Space pre-order and minus partial order for operators on Banach spaces”, Aeq. Math., 85:3 (2013), 429–448 | DOI | MR | Zbl