On coarse grid correction methods in Krylov subspaces
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 44-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Two approaches using coarse grid correction in the course of a certain Krylov iterative process are presented. The aim of the correction is to accelerate the iterations. These approaches are based on an approximation of the function sought for by simple basis functions having finite supports. Additional acceleration can be achieved if one applies restarts of the iterative process together with the approximate solution refinement approach. In this case, the resulting process turns out to be a two-level preconditioned method. A series of numerical experiments has been carried out to show the influence of different parameters of the iterative process on the convergence.
@article{ZNSL_2017_463_a4,
     author = {Y. L. Gurieva and V. P. Il'in},
     title = {On coarse grid correction methods in {Krylov} subspaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {44--57},
     year = {2017},
     volume = {463},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a4/}
}
TY  - JOUR
AU  - Y. L. Gurieva
AU  - V. P. Il'in
TI  - On coarse grid correction methods in Krylov subspaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 44
EP  - 57
VL  - 463
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a4/
LA  - ru
ID  - ZNSL_2017_463_a4
ER  - 
%0 Journal Article
%A Y. L. Gurieva
%A V. P. Il'in
%T On coarse grid correction methods in Krylov subspaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 44-57
%V 463
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a4/
%G ru
%F ZNSL_2017_463_a4
Y. L. Gurieva; V. P. Il'in. On coarse grid correction methods in Krylov subspaces. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 44-57. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a4/

[1] Ya. L. Gureva, V. P. Ilin, D. V. Perevozkin, “Algebro-geometricheskie i informatsionnye struktury metodov dekompozitsii oblastei”, Vychisl. metody program., 17 (2016), 132–146

[2] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publ., NY, 1996 | MR | Zbl

[3] Ya. L. Gureva, V. P. Ilin, “O tekhnologiyakh uskoreniya parallelnykh metodov dekompozitsii”, Vychisl. metody program., 16 (2015), 146–154

[4] V. P. Ilin, “O metodakh naimenshikh kvadratov v podprostranstvakh Krylova”, Zap. nauchn. semin. POMI, 453, 2016, 131–147 | MR

[5] Y. Saad, M. Yeung, J. Erhel, F. Guyomarc'h, “A deflated version of the Conjugate Gradient Algorithm”, SIAM J. Sci. Comput., 21:5 (2000), 1909–1926 | DOI | MR | Zbl

[6] V. P. Ilin, Metody i tekhnologii konechnykh elementov, IVMiMG SO RAN, Novosibirsk, 2007

[7] http://www.sscc.icmmg.nsc.ru