On the Kr\"auter--Seifter theorem on permanent divisibility
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 25-35
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper investigates the divisibility of the permanent function of $(1,-1)$-matrices by different powers of 2. It is shown that the Kräuter–Seifter bound is the best possible for generic $(1,-1)$-matrices.
			
            
            
            
          
        
      @article{ZNSL_2017_463_a2,
     author = {M. V. Budrevich and A. E. Guterman and K. A. Taranin},
     title = {On the {Kr\"auter--Seifter} theorem on permanent divisibility},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {25--35},
     publisher = {mathdoc},
     volume = {463},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a2/}
}
                      
                      
                    TY - JOUR AU - M. V. Budrevich AU - A. E. Guterman AU - K. A. Taranin TI - On the Kr\"auter--Seifter theorem on permanent divisibility JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 25 EP - 35 VL - 463 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a2/ LA - ru ID - ZNSL_2017_463_a2 ER -
M. V. Budrevich; A. E. Guterman; K. A. Taranin. On the Kr\"auter--Seifter theorem on permanent divisibility. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 25-35. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a2/
