On two algorithms of wavelet decomposition for spaces of linear splines
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 277-293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The purpose of this paper is to construct new types of wavelets for minimal splines on an irregular grid. The approach used to construct spline-wavelet decompositions uses approximation relations as the initial structure for constructing the spaces of minimal splines. The advantages of this approach are the possibility of using irregular grids and sufficiently arbitrary nonpolynomial spline-wavelets.
@article{ZNSL_2017_463_a17,
     author = {A. A. Makarov},
     title = {On two algorithms of wavelet decomposition for spaces of linear splines},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {277--293},
     year = {2017},
     volume = {463},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a17/}
}
TY  - JOUR
AU  - A. A. Makarov
TI  - On two algorithms of wavelet decomposition for spaces of linear splines
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 277
EP  - 293
VL  - 463
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a17/
LA  - ru
ID  - ZNSL_2017_463_a17
ER  - 
%0 Journal Article
%A A. A. Makarov
%T On two algorithms of wavelet decomposition for spaces of linear splines
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 277-293
%V 463
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a17/
%G ru
%F ZNSL_2017_463_a17
A. A. Makarov. On two algorithms of wavelet decomposition for spaces of linear splines. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 277-293. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a17/

[1] A. A. Makarov, “O veivletnom razlozhenii prostranstv splainov pervogo poryadka”, Probl. mat. analiza, 38, 2008, 47–60

[2] A. A. Makarov, “Algoritmy veivletnogo szhatiya prostranstv lineinykh splainov”, Vestn. S.-Peterb. un-ta, 1:2 (2012), 41–51

[3] A. A. Makarov, “Algoritmy veivletnogo utochneniya prostranstv splainov pervogo poryadka”, Trudy SPIIRAN, 19, 2011, 203–220

[4] Yu. K. Demyanovich, I. D. Miroshnichenko, “Gnezdovye splain-veivletnye razlozheniya”, Probl. mat. analiza, 64, 2012, 51–61 | Zbl

[5] Yu. K. Demyanovich, “Splain-veivlety pri odnokratnom lokalnom ukrupnenii setki”, Zap. nauchn. semin. POMI, 405, 2012, 97–118 | MR

[6] Yu. K. Demyanovich, A. S. Ponomarev, “O realizatsii splain-vspleskovogo razlozheniya pervogo poryadka”, Zap. nauchn. semin. POMI, 453, 2016, 33–73 | MR

[7] W. Sweldens, “The lifting scheme: A custom-design construction of biorthogonal wavelets”, Appl. Comput. Harmonic Anal., 3:2 (1996), 186–200 | DOI | MR | Zbl

[8] B. M. Shumilov, “Algoritmy s rasschepleniem veivlet-preobrazovaniya splainov pervoi stepeni na neravnomernykh setkakh”, Vychisl. mat. mat. fiz., 56:7 (2016), 1236–1247 | DOI | Zbl

[9] A. A. Makarov, “O postroenii splainov maksimalnoi gladkosti”, Probl. mat. analiza, 60, 2011, 25–38 | Zbl

[10] A. A. Makarov, “Ob odnom algebraicheskom tozhdestve v teorii $B_\varphi$-splainov vtorogo poryadka”, Vestn. S.-Peterb. un-ta, 1:1 (2007), 96–98 | MR

[11] E. Stolnits, T. DeRouz, D. Salezin, Veivlety v kompyuternoi grafike, Per. s angl., NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002, 272 pp.