On two algorithms of wavelet decomposition for spaces of linear splines
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 277-293
Voir la notice de l'article provenant de la source Math-Net.Ru
The purpose of this paper is to construct new types of wavelets for minimal splines on an irregular grid. The approach used to construct spline-wavelet decompositions uses approximation relations as the initial structure for constructing the spaces of minimal splines. The advantages of this approach are the possibility of using irregular grids and sufficiently arbitrary nonpolynomial spline-wavelets.
@article{ZNSL_2017_463_a17,
author = {A. A. Makarov},
title = {On two algorithms of wavelet decomposition for spaces of linear splines},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {277--293},
publisher = {mathdoc},
volume = {463},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a17/}
}
A. A. Makarov. On two algorithms of wavelet decomposition for spaces of linear splines. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 277-293. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a17/