A generalization of the theorem on forming a~matroid from parts
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 269-276
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A generalization of the theorem on forming a matroid from parts is proved, i.e., given a finite set subdivided into some blocks, each of which is supplied with a matroid structure, and assuming that the ranks of every union of certain blocks are prescribed in such a way that the conditions on the rank function of a matroid are fulfilled, one can extend the rank function to all the subsets of the original set in such a way that the latter becomes a matroid.
			
            
            
            
          
        
      @article{ZNSL_2017_463_a16,
     author = {N. A. Lebedinskaya and D. M. Lebedinskii and A. A. Smirnov},
     title = {A generalization of the theorem on forming a~matroid from parts},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {269--276},
     publisher = {mathdoc},
     volume = {463},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a16/}
}
                      
                      
                    TY - JOUR AU - N. A. Lebedinskaya AU - D. M. Lebedinskii AU - A. A. Smirnov TI - A generalization of the theorem on forming a~matroid from parts JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 269 EP - 276 VL - 463 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a16/ LA - ru ID - ZNSL_2017_463_a16 ER -
N. A. Lebedinskaya; D. M. Lebedinskii; A. A. Smirnov. A generalization of the theorem on forming a~matroid from parts. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 269-276. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a16/
