@article{ZNSL_2017_463_a15,
author = {L. Yu. Kolotilina},
title = {An upper bound for the largest eigenvalue of a~positive semidefinite block banded matrix},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {263--268},
year = {2017},
volume = {463},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a15/}
}
L. Yu. Kolotilina. An upper bound for the largest eigenvalue of a positive semidefinite block banded matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 263-268. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a15/
[1] L. Yu. Kolotilina, “Nekotorye otsenki sobstvennykh znachenii simmetrichnykh matrits, otmasshtabirovannykh s pomoschyu blochnogo Yakobi”, Zap. nauchn. semin. POMI, 202, 1992, 18–25 | MR | Zbl
[2] N. Aronszajn, “Rayleigh–Ritz and A. Weinstein mwthods for approximation of eigenvalues. I. Operators in a Hilbert space”, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 474–480 | DOI | MR | Zbl
[3] O. Axelsson, L. Yu. Kolotilina, Block matrix generalizations of some eigenvalue bounds involving traces for symmetric matrices, Report 9423, Dept. of Math., Univ. of Nijmegen, Nijmegen, The Nethrlands, May 1994
[4] Yuyan Ge, Minghua Lin, “A note on the extreme eigenvalues of scaled block positive definite matrices”, Math. Notes, Submitted
[5] L. A. Hageman, D. M. Young, Applied Iterative Methods, New York, 1981 | MR
[6] L. Yu. Kolotilina, “Eigenvalue bounds and inequalities using vector aggregation of matrices”, Linear Algebra Appl., 271 (1998), 139–167 | DOI | MR | Zbl
[7] R. C. Thompson, S. Therianos, “Inequalities connecting the eigenvalues of a hermitian matrix with the eigenvalues of complementary principal submatrices”, Bull. Austral. Math. Soc., 6 (1972), 117–132 | DOI | MR | Zbl