An upper bound for the largest eigenvalue of a~positive semidefinite block banded matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 263-268
Voir la notice de l'article provenant de la source Math-Net.Ru
The new upper bound
$$
\lambda_\mathrm{max}(A)\le\sum_{k=1}^{p+1}\max_{i\equiv k\pmod{p+1}}\lambda_\mathrm{max}(A_{ii})
$$
for the largest eigenvalue of a Hermitian positive semidefinite block banded matrix $A=(A_{ij})$ of block semibandwidth $p$ is suggested. In the special case where the diagonal blocks of $A$ are identity matrices, the latter bound reduces to the bound $\lambda_\mathrm{max}(A)\le p+1$, depending on $p$ only, which improves the bounds established for such matrices earlier and extends the bound $\lambda_\mathrm{max}(A)\le2$, old known for $p=1$, i.e., for block tridiagonal matrices, to the general case $p\ge1$.
@article{ZNSL_2017_463_a15,
author = {L. Yu. Kolotilina},
title = {An upper bound for the largest eigenvalue of a~positive semidefinite block banded matrix},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {263--268},
publisher = {mathdoc},
volume = {463},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a15/}
}
TY - JOUR AU - L. Yu. Kolotilina TI - An upper bound for the largest eigenvalue of a~positive semidefinite block banded matrix JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 263 EP - 268 VL - 463 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a15/ LA - ru ID - ZNSL_2017_463_a15 ER -
L. Yu. Kolotilina. An upper bound for the largest eigenvalue of a~positive semidefinite block banded matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 263-268. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a15/