An upper bound for the largest eigenvalue of a positive semidefinite block banded matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 263-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The new upper bound $$ \lambda_\mathrm{max}(A)\le\sum_{k=1}^{p+1}\max_{i\equiv k\pmod{p+1}}\lambda_\mathrm{max}(A_{ii}) $$ for the largest eigenvalue of a Hermitian positive semidefinite block banded matrix $A=(A_{ij})$ of block semibandwidth $p$ is suggested. In the special case where the diagonal blocks of $A$ are identity matrices, the latter bound reduces to the bound $\lambda_\mathrm{max}(A)\le p+1$, depending on $p$ only, which improves the bounds established for such matrices earlier and extends the bound $\lambda_\mathrm{max}(A)\le2$, old known for $p=1$, i.e., for block tridiagonal matrices, to the general case $p\ge1$.
@article{ZNSL_2017_463_a15,
     author = {L. Yu. Kolotilina},
     title = {An upper bound for the largest eigenvalue of a~positive semidefinite block banded matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {263--268},
     year = {2017},
     volume = {463},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a15/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - An upper bound for the largest eigenvalue of a positive semidefinite block banded matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 263
EP  - 268
VL  - 463
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a15/
LA  - ru
ID  - ZNSL_2017_463_a15
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T An upper bound for the largest eigenvalue of a positive semidefinite block banded matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 263-268
%V 463
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a15/
%G ru
%F ZNSL_2017_463_a15
L. Yu. Kolotilina. An upper bound for the largest eigenvalue of a positive semidefinite block banded matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 263-268. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a15/

[1] L. Yu. Kolotilina, “Nekotorye otsenki sobstvennykh znachenii simmetrichnykh matrits, otmasshtabirovannykh s pomoschyu blochnogo Yakobi”, Zap. nauchn. semin. POMI, 202, 1992, 18–25 | MR | Zbl

[2] N. Aronszajn, “Rayleigh–Ritz and A. Weinstein mwthods for approximation of eigenvalues. I. Operators in a Hilbert space”, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 474–480 | DOI | MR | Zbl

[3] O. Axelsson, L. Yu. Kolotilina, Block matrix generalizations of some eigenvalue bounds involving traces for symmetric matrices, Report 9423, Dept. of Math., Univ. of Nijmegen, Nijmegen, The Nethrlands, May 1994

[4] Yuyan Ge, Minghua Lin, “A note on the extreme eigenvalues of scaled block positive definite matrices”, Math. Notes, Submitted

[5] L. A. Hageman, D. M. Young, Applied Iterative Methods, New York, 1981 | MR

[6] L. Yu. Kolotilina, “Eigenvalue bounds and inequalities using vector aggregation of matrices”, Linear Algebra Appl., 271 (1998), 139–167 | DOI | MR | Zbl

[7] R. C. Thompson, S. Therianos, “Inequalities connecting the eigenvalues of a hermitian matrix with the eigenvalues of complementary principal submatrices”, Bull. Austral. Math. Soc., 6 (1972), 117–132 | DOI | MR | Zbl