An approach to bounding the spectral radius of a weighted digraph
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 240-262 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper suggests a general approach to deriving upper bounds for the spectral radii of weighted graphs and digraphs. The approach is based on the generalized Wielandt lemma (GWL), which reduces the problem of bounding the spectral radius of a given block matrix to bounding the Perron root of the matrix composed of the norms of the blocks. In the case of the adjacency matrix of weighted graphs and digraphs, where all the blocks are square positive semidefinite matrices of the same order, the GWL takes an especially nice simple form. The second component of the approach consists in applying known upper bounds for the Perron root of a nonnegative matrix. It is shown that the approach suggested covers, in particular, the known upper bounds of the spectral radius and allows one to describe the equality cases.
@article{ZNSL_2017_463_a14,
     author = {L. Yu. Kolotilina},
     title = {An approach to bounding the spectral radius of a~weighted digraph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {240--262},
     year = {2017},
     volume = {463},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a14/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - An approach to bounding the spectral radius of a weighted digraph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 240
EP  - 262
VL  - 463
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a14/
LA  - ru
ID  - ZNSL_2017_463_a14
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T An approach to bounding the spectral radius of a weighted digraph
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 240-262
%V 463
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a14/
%G ru
%F ZNSL_2017_463_a14
L. Yu. Kolotilina. An approach to bounding the spectral radius of a weighted digraph. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 240-262. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a14/

[1] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy”, Zap. nauchn. semin. POMI, 284, 2002, 77–122 | MR | Zbl

[2] Ş. B. Bozkurt, D. Bozkurt, “On the spectral radius of weighted digraphs”, Proyec. J. Math., 31:3 (2012), 247–259 | MR | Zbl

[3] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic, New York, 1979 | MR | Zbl

[4] Ş. Büyükköse, S. Sorgun, “A bound on the spectral radius of a weighted graph”, Gazi Univ. J. Sci., 22:4 (2009), 263–266 | MR

[5] Kinkar Ch. Das, “Extremal graph characterization from the bounds of the spectral radius”, Appl. Math. Comput., 217 (2011), 7420–7426 | MR | Zbl

[6] Kinkar Ch. Das, R. B. Bapat, “A sharp upper bound on the spectral radius of weighted graphs”, Discrete Math., 308 (2008), 3180–3186 | DOI | MR | Zbl

[7] O. Favaron, M. Mahéo, J.-F. Saclé, “Some eigenvalue properties in graphs (conjectures of Graffiti – II)”, Discrete Math., 111 (1993), 197–220 | DOI | MR | Zbl

[8] G. Frobenius, “Über Matrizen aus nichtnegativen Elementen”, Sitzungsber. Kön. uss. Akad. Wiss., Berlin, 1912, 465–477

[9] L. Yu. Kolotilina, “Nonsingularity/singularity criteria for nonstrictly block diagonally dominant matrices”, Linear Algebra Appl., 359 (2003), 133–159 | DOI | MR | Zbl

[10] Shu-Lin Liu, “Bounds for the greatest characteristic root of a nonnegative matrix”, Linear Algebra Appl., 239 (1996), 151–160 | DOI | MR | Zbl

[11] H. Minc, Nonnegative Matrices, Wiley, New York, 1988 | MR | Zbl

[12] A. M. Ostrowski, “Über das Nichtverschwinden einer Klasse von Determinanten und die Lokalisierung der charakterischen Wurzeln von Matrizen”, Compositio Math., 9 (1951), 209–226 | MR | Zbl

[13] A. M. Ostrowski, “On some metrical properties of operator matrices and matrices partitioned into blocks”, J. Math. Anal. Appl., 2 (1961), 161–209 | DOI | MR | Zbl

[14] F. Robert, “Recherche d'une $M$-matrice parmi les minorantes d'un opérateur linéaire”, Numer. Math., 9 (1966), 189–199 | DOI | MR | Zbl

[15] F. Robert, “Blocs-H-matrices et convergence des méthodes itérative classiques par blocs”, Linear Algebra Appl., 2 (1969), 223–265 | DOI | MR | Zbl

[16] S. Sorgun, “The comparison of upper bounds for spectral radius of weighted graphs”, Int. J. Algebra, 5 (2011), 1567–1574 | MR | Zbl

[17] S. Sorgun, Ş. Büyükköse, “The new upper bounds on the spectral radius of weighted graphs”, Appl. Math. Comput., 218 (2012), 5231–5238 | MR | Zbl

[18] S. Sorgun, Ş. Büyükköse, H. S. Özarslan, “An upper bound on the spectral radius of weighted graphs”, Hacettepe J. Math Stat., 42:5 (2013), 517–524 | MR | Zbl

[19] Gui-Xian Tian, Ting-Zhu Huang, “A note on upper bounds for the spectral radius of weighted graphs”, Appl. Math. Comput., 243 (2014), 392–397 | MR | Zbl

[20] H. Wielandt, “Unzerlegbare, nicht negative Matrizen”, Math. Zeitschr., 52 (1950), 642–648 | DOI | MR | Zbl