@article{ZNSL_2017_463_a14,
author = {L. Yu. Kolotilina},
title = {An approach to bounding the spectral radius of a~weighted digraph},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {240--262},
year = {2017},
volume = {463},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a14/}
}
L. Yu. Kolotilina. An approach to bounding the spectral radius of a weighted digraph. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 240-262. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a14/
[1] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy”, Zap. nauchn. semin. POMI, 284, 2002, 77–122 | MR | Zbl
[2] Ş. B. Bozkurt, D. Bozkurt, “On the spectral radius of weighted digraphs”, Proyec. J. Math., 31:3 (2012), 247–259 | MR | Zbl
[3] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic, New York, 1979 | MR | Zbl
[4] Ş. Büyükköse, S. Sorgun, “A bound on the spectral radius of a weighted graph”, Gazi Univ. J. Sci., 22:4 (2009), 263–266 | MR
[5] Kinkar Ch. Das, “Extremal graph characterization from the bounds of the spectral radius”, Appl. Math. Comput., 217 (2011), 7420–7426 | MR | Zbl
[6] Kinkar Ch. Das, R. B. Bapat, “A sharp upper bound on the spectral radius of weighted graphs”, Discrete Math., 308 (2008), 3180–3186 | DOI | MR | Zbl
[7] O. Favaron, M. Mahéo, J.-F. Saclé, “Some eigenvalue properties in graphs (conjectures of Graffiti – II)”, Discrete Math., 111 (1993), 197–220 | DOI | MR | Zbl
[8] G. Frobenius, “Über Matrizen aus nichtnegativen Elementen”, Sitzungsber. Kön. uss. Akad. Wiss., Berlin, 1912, 465–477
[9] L. Yu. Kolotilina, “Nonsingularity/singularity criteria for nonstrictly block diagonally dominant matrices”, Linear Algebra Appl., 359 (2003), 133–159 | DOI | MR | Zbl
[10] Shu-Lin Liu, “Bounds for the greatest characteristic root of a nonnegative matrix”, Linear Algebra Appl., 239 (1996), 151–160 | DOI | MR | Zbl
[11] H. Minc, Nonnegative Matrices, Wiley, New York, 1988 | MR | Zbl
[12] A. M. Ostrowski, “Über das Nichtverschwinden einer Klasse von Determinanten und die Lokalisierung der charakterischen Wurzeln von Matrizen”, Compositio Math., 9 (1951), 209–226 | MR | Zbl
[13] A. M. Ostrowski, “On some metrical properties of operator matrices and matrices partitioned into blocks”, J. Math. Anal. Appl., 2 (1961), 161–209 | DOI | MR | Zbl
[14] F. Robert, “Recherche d'une $M$-matrice parmi les minorantes d'un opérateur linéaire”, Numer. Math., 9 (1966), 189–199 | DOI | MR | Zbl
[15] F. Robert, “Blocs-H-matrices et convergence des méthodes itérative classiques par blocs”, Linear Algebra Appl., 2 (1969), 223–265 | DOI | MR | Zbl
[16] S. Sorgun, “The comparison of upper bounds for spectral radius of weighted graphs”, Int. J. Algebra, 5 (2011), 1567–1574 | MR | Zbl
[17] S. Sorgun, Ş. Büyükköse, “The new upper bounds on the spectral radius of weighted graphs”, Appl. Math. Comput., 218 (2012), 5231–5238 | MR | Zbl
[18] S. Sorgun, Ş. Büyükköse, H. S. Özarslan, “An upper bound on the spectral radius of weighted graphs”, Hacettepe J. Math Stat., 42:5 (2013), 517–524 | MR | Zbl
[19] Gui-Xian Tian, Ting-Zhu Huang, “A note on upper bounds for the spectral radius of weighted graphs”, Appl. Math. Comput., 243 (2014), 392–397 | MR | Zbl
[20] H. Wielandt, “Unzerlegbare, nicht negative Matrizen”, Math. Zeitschr., 52 (1950), 642–648 | DOI | MR | Zbl