The minimal and characteristic polyanalytic polynomials of a normal matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 154-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The concept of the minimal polyanalytic polynomial was introduced by M. Huhtanen in connection with the generalized Lanczos process as applied to a normal matrix. The paper discusses the possibility of finding an equivalent of the characteristic polynomial in the set of polyanalytic polynomials.
@article{ZNSL_2017_463_a11,
     author = {Kh. D. Ikramov},
     title = {The minimal and characteristic polyanalytic polynomials of a~normal matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {154--159},
     year = {2017},
     volume = {463},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a11/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - The minimal and characteristic polyanalytic polynomials of a normal matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 154
EP  - 159
VL  - 463
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a11/
LA  - ru
ID  - ZNSL_2017_463_a11
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T The minimal and characteristic polyanalytic polynomials of a normal matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 154-159
%V 463
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a11/
%G ru
%F ZNSL_2017_463_a11
Kh. D. Ikramov. The minimal and characteristic polyanalytic polynomials of a normal matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 154-159. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a11/

[1] M. B. Balk, M. F. Zuev, “On polyanalytic functions”, Russ. Math. Surveys, 25:5 (1970), 201–223 | DOI | MR | Zbl

[2] M. Huhtanen, “Orthogonal polyanalytic polynomials and normal matrices”, Math. Comp., 72 (2002), 355–373 | DOI | MR

[3] L. Elsner, Kh. D. Ikramov, “On a condensed form for normal matrices under finite sequences of elementary unitary similarities”, Linear Algebra Appl., 254 (1997), 79–98 | DOI | MR | Zbl