The number of matrices with nonzero permanent over a~finite field
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 13-24

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method for obtaining lower bounds on the number of matrices over a finite field with nonzero permanent is developed. Some earlier results are improved.
@article{ZNSL_2017_463_a1,
     author = {M. V. Budrevich},
     title = {The number of matrices with nonzero permanent over a~finite field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {13--24},
     publisher = {mathdoc},
     volume = {463},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a1/}
}
TY  - JOUR
AU  - M. V. Budrevich
TI  - The number of matrices with nonzero permanent over a~finite field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 13
EP  - 24
VL  - 463
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a1/
LA  - ru
ID  - ZNSL_2017_463_a1
ER  - 
%0 Journal Article
%A M. V. Budrevich
%T The number of matrices with nonzero permanent over a~finite field
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 13-24
%V 463
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a1/
%G ru
%F ZNSL_2017_463_a1
M. V. Budrevich. The number of matrices with nonzero permanent over a~finite field. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXX, Tome 463 (2017), pp. 13-24. http://geodesic.mathdoc.fr/item/ZNSL_2017_463_a1/