On the dual complexity and spectra of some combinatorial functions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 112-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In a recent paper, A. M. Vershik and the author started the study of representation-theoretic aspects of well-known combinatorial functions on the symmetric groups $\mathfrak S_n$. The note presents a series of further results in this direction.
@article{ZNSL_2017_462_a6,
     author = {N. V. Tsilevich},
     title = {On the dual complexity and spectra of some combinatorial functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {112--121},
     year = {2017},
     volume = {462},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a6/}
}
TY  - JOUR
AU  - N. V. Tsilevich
TI  - On the dual complexity and spectra of some combinatorial functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 112
EP  - 121
VL  - 462
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a6/
LA  - en
ID  - ZNSL_2017_462_a6
ER  - 
%0 Journal Article
%A N. V. Tsilevich
%T On the dual complexity and spectra of some combinatorial functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 112-121
%V 462
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a6/
%G en
%F ZNSL_2017_462_a6
N. V. Tsilevich. On the dual complexity and spectra of some combinatorial functions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 112-121. http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a6/

[1] A. R. Calderbank, P. Hanlon, S. Sundaram, “Representations of the symmetric group in deformations of the free Lie algebra”, Trans. Amer. Math. Soc., 341:1 (1994), 315–333 | DOI | MR | Zbl

[2] A. Garsia, C. Reutenauer, “A decomposition of Solomon's descent algebra”, Adv. Math., 77 (1989), 189–262 | DOI | MR | Zbl

[3] S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, Berlin–Heidelberg, 2011 | MR | Zbl

[4] A. A. Klyachko, “Lie elements in the tensor algebra”, Siberian Math. J., 15:6 (1974), 914–920 | DOI | MR

[5] D. E. Knuth, The Art of Computer Programming, v. 1, Addison-Wesley, Reading, 1975 | MR

[6] W. Kraskiewicz, J. Weyman, “Algebra of coinvariants and the action of a Coxeter element”, Bayr. Math. Schr., 63 (2001), 265–284 | MR | Zbl

[7] P. A. MacMahon, Combinatory Analysis, v. 2, Cambridge Univ. Press, 1915 ; Reprinted by Chelsea, New York, 1960 | MR | Zbl | Zbl

[8] R. Stanley, Enumerative Combinatorics, v. 2, Cambidge Univ. Press, 1999 | MR | Zbl

[9] A. M. Vershik, N. V. Tsilevich, “On the relation of some combinatorial functions to representation theory”, Funct. Anal. Appl., 51:1 (2017), 28–39 | DOI | MR | Zbl