Confluent Heun equation and confluent hypergeometric equation
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 93-102

Voir la notice de l'article provenant de la source Math-Net.Ru

The confluent Heun equation and confluent hypergeometric equation are studied in scalar and vector forms with particular emphasis to the role of apparent singularities. The relation to the Painlevé equation is shown.
@article{ZNSL_2017_462_a4,
     author = {S. Yu. Slavyanov and A. A. Salatich},
     title = {Confluent {Heun} equation and confluent hypergeometric equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {93--102},
     publisher = {mathdoc},
     volume = {462},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a4/}
}
TY  - JOUR
AU  - S. Yu. Slavyanov
AU  - A. A. Salatich
TI  - Confluent Heun equation and confluent hypergeometric equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 93
EP  - 102
VL  - 462
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a4/
LA  - ru
ID  - ZNSL_2017_462_a4
ER  - 
%0 Journal Article
%A S. Yu. Slavyanov
%A A. A. Salatich
%T Confluent Heun equation and confluent hypergeometric equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 93-102
%V 462
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a4/
%G ru
%F ZNSL_2017_462_a4
S. Yu. Slavyanov; A. A. Salatich. Confluent Heun equation and confluent hypergeometric equation. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 93-102. http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a4/