@article{ZNSL_2017_462_a4,
author = {S. Yu. Slavyanov and A. A. Salatich},
title = {Confluent {Heun} equation and confluent hypergeometric equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {93--102},
year = {2017},
volume = {462},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a4/}
}
S. Yu. Slavyanov; A. A. Salatich. Confluent Heun equation and confluent hypergeometric equation. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 93-102. http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a4/
[1] A. Kazakov, S. Slavyanov, “Integralnye simmetrii Eilera dlya konflyuentnogo uravneniya Goina i simmetrii uravneniya Penleve $P^V$”, Teor. mat. fiz., 179:2 (2014), 189–195 | DOI | MR | Zbl
[2] S. Slavyanov, “Simmetrii i lozhnye singulyarnosti dlya prosteishikh fuksovykh uravnenii”, Teor. mat. fiz., 193:3 (2017), 401–408 | DOI
[3] S. Slavyanov, V. Lai, Spetsialnye funktsii: edinaya teoriya, osnovannaya na analize singulyarnostei, Nevskii dialekt, SPb., 2002
[4] A. Ronveaux (ed.), Heun's Differential Equation, Oxford Univ. Press, Oxford–New York–Tokyo, 1995
[5] S. Slavyanov, D. Shatko, A. Ishkanyan, T. Rotinyan, “Generatsiya i udalenie lozhnykh osobennostei v lineinykh ODU s polinomialnym koeffitsientom”, Teor. mat. fiz., 189:3 (2016), 371–379 | DOI | MR | Zbl
[6] S. Slavyanov, “Antikvantovanie i sootvetstvuyuschie simmetrii”, Teor. mat. fiz., 182:2 (2015), 223–230 | DOI | MR | Zbl
[7] S. Yu. Slavyanov, O. L. Stesik, “Antikvantovanie deformirovannykh uravnenii klassa Goina”, Teor. mat. fiz., 186:1 (2016), 142–151 | DOI | MR | Zbl
[8] A. Ishkhanyan, K. Suominen, “New solutions of Heun's general equation”, J. Phys. A, 36 (2003), L81–L86 | DOI | MR
[9] A. D. Bruno, A. B. Batkin (eds.), Painlevé Equations and Related Topics, De Gruyter, 2012 | MR
[10] S. Yu. Slavyanov, “Painlevé equations as classical analogues of Heun equation”, J. Phys. A, 29 (1996), 7329–7335 | DOI | MR | Zbl