Combinatorial encodings of infinite symmetric groups and descriptions of semigroups of double cosets
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 65-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Spaces of double cosets of infinite symmetric groups with respect to some special subgroups admit natural structures of semigroups. Elements of such semigroups can be interpreted in combinatorial terms. We present a description of such constructions in a relatively wide degree of generality.
@article{ZNSL_2017_462_a3,
     author = {Yu. A. Neretin},
     title = {Combinatorial encodings of infinite symmetric groups and descriptions of semigroups of double cosets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {65--92},
     year = {2017},
     volume = {462},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a3/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Combinatorial encodings of infinite symmetric groups and descriptions of semigroups of double cosets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 65
EP  - 92
VL  - 462
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a3/
LA  - en
ID  - ZNSL_2017_462_a3
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Combinatorial encodings of infinite symmetric groups and descriptions of semigroups of double cosets
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 65-92
%V 462
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a3/
%G en
%F ZNSL_2017_462_a3
Yu. A. Neretin. Combinatorial encodings of infinite symmetric groups and descriptions of semigroups of double cosets. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 65-92. http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a3/

[1] A. A. Gaifullin, Yu. A. Neretin, “Infinite symmetric group and bordisms of pseudomanifolds”, J. Topol. Anal. | DOI

[2] A. Guichardet, Symmetric Hilbert Spaces and Related Topics, Lect. Notes Math., 261, Springer-Verlag, Berlin–New York, 1972 | DOI | MR | Zbl

[3] A. Kechris, Ch. Rosendal, “Turbulence, amalgamation, and generic automorphisms of homogeneous structures”, Proc. Lond. Math. Soc. (3), 94:2 (2007), 302–350 | DOI | MR | Zbl

[4] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:3 (2004), 551–642 | DOI | MR | Zbl

[5] A. A. Kirillov, Elements of the Theory of Representations, Springer-Verlag, Berlin–New York, 1976 | MR | Zbl

[6] A. Lieberman, “The structure of certain unitary representations of infinite symmetric groups”, Trans. Amer. Math. Soc., 164 (1972), 189–198 | DOI | MR | Zbl

[7] Yu. A. Neretin, Categories of Symmetries and Infinite-Dimensional Groups, Oxford Univ. Press, New York, 1996 | MR | Zbl

[8] Yu. A. Neretin, Infinite symmetric group and combinatorial descriptions of semigroups of double cosets, arXiv: 1106.1161

[9] Yu. A. Neretin, “Infinite tri-symmetric group, multiplication of double cosets, and checker topological field theories”, Int. Math. Res. Not., 2012:3 (2012), 501–523 | DOI | MR | Zbl

[10] Yu. A. Neretin, “Infinite symmetric groups and combinatorial constructions of topological field theory type”, Russian Math. Surv., 70:4 (2015), 715–773 | DOI | MR | Zbl

[11] Yu. A. Neretin, Symmetric groups and checker triangulated surfaces, Preprint (to appear)

[12] N. I. Nessonov, “Representations of $\mathfrak S_\infty$ admissible with respect to Young subgroups”, Sb. Math., 203:3 (2012), 424–458 | DOI | MR | Zbl

[13] A. Okounkov, “Thoma's theorem and representations of the infinite bisymmetric group”, Funct. Anal. Appl., 28:2 (1994), 100–107 | DOI | MR | Zbl

[14] G. I. Olshanski, “Unitary representations of the infinite symmetric group: a semigroup approach”, Representations of Lie Groups and Lie Algebras, Akad. Kiadó, Budapest, 1985, 181–197 | MR

[15] G. I. Olshanski, “Unitary representations of $(G,K)$-pairs connected with the infinite symmetric group $S(\infty)$”, Leningrad Math. J., 1:4 (1990), 983–1014 | MR | Zbl

[16] J. von Neumann, “On infinite direct products”, Compos. Math., 6 (1938), 1–77 ; Reprinted in: J. von Neumann, Collected Works | MR | Zbl

[17] E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61 | DOI | MR | Zbl

[18] A. M. Vershik, S. V. Kerov, “Characters and factor representations of the infinite symmetric group”, Sov. Math. Dokl., 23:2 (1981), 389–392 | MR | Zbl