Combinatorial encodings of infinite symmetric groups and descriptions of semigroups of double cosets
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 65-92
Voir la notice de l'article provenant de la source Math-Net.Ru
Spaces of double cosets of infinite symmetric groups with respect to some special subgroups admit natural structures of semigroups. Elements of such semigroups can be interpreted in combinatorial terms. We present a description of such constructions in a relatively wide degree of generality.
@article{ZNSL_2017_462_a3,
author = {Yu. A. Neretin},
title = {Combinatorial encodings of infinite symmetric groups and descriptions of semigroups of double cosets},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {65--92},
publisher = {mathdoc},
volume = {462},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a3/}
}
TY - JOUR AU - Yu. A. Neretin TI - Combinatorial encodings of infinite symmetric groups and descriptions of semigroups of double cosets JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 65 EP - 92 VL - 462 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a3/ LA - en ID - ZNSL_2017_462_a3 ER -
Yu. A. Neretin. Combinatorial encodings of infinite symmetric groups and descriptions of semigroups of double cosets. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 65-92. http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a3/