@article{ZNSL_2017_462_a3,
author = {Yu. A. Neretin},
title = {Combinatorial encodings of infinite symmetric groups and descriptions of semigroups of double cosets},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {65--92},
year = {2017},
volume = {462},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a3/}
}
Yu. A. Neretin. Combinatorial encodings of infinite symmetric groups and descriptions of semigroups of double cosets. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 65-92. http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a3/
[1] A. A. Gaifullin, Yu. A. Neretin, “Infinite symmetric group and bordisms of pseudomanifolds”, J. Topol. Anal. | DOI
[2] A. Guichardet, Symmetric Hilbert Spaces and Related Topics, Lect. Notes Math., 261, Springer-Verlag, Berlin–New York, 1972 | DOI | MR | Zbl
[3] A. Kechris, Ch. Rosendal, “Turbulence, amalgamation, and generic automorphisms of homogeneous structures”, Proc. Lond. Math. Soc. (3), 94:2 (2007), 302–350 | DOI | MR | Zbl
[4] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:3 (2004), 551–642 | DOI | MR | Zbl
[5] A. A. Kirillov, Elements of the Theory of Representations, Springer-Verlag, Berlin–New York, 1976 | MR | Zbl
[6] A. Lieberman, “The structure of certain unitary representations of infinite symmetric groups”, Trans. Amer. Math. Soc., 164 (1972), 189–198 | DOI | MR | Zbl
[7] Yu. A. Neretin, Categories of Symmetries and Infinite-Dimensional Groups, Oxford Univ. Press, New York, 1996 | MR | Zbl
[8] Yu. A. Neretin, Infinite symmetric group and combinatorial descriptions of semigroups of double cosets, arXiv: 1106.1161
[9] Yu. A. Neretin, “Infinite tri-symmetric group, multiplication of double cosets, and checker topological field theories”, Int. Math. Res. Not., 2012:3 (2012), 501–523 | DOI | MR | Zbl
[10] Yu. A. Neretin, “Infinite symmetric groups and combinatorial constructions of topological field theory type”, Russian Math. Surv., 70:4 (2015), 715–773 | DOI | MR | Zbl
[11] Yu. A. Neretin, Symmetric groups and checker triangulated surfaces, Preprint (to appear)
[12] N. I. Nessonov, “Representations of $\mathfrak S_\infty$ admissible with respect to Young subgroups”, Sb. Math., 203:3 (2012), 424–458 | DOI | MR | Zbl
[13] A. Okounkov, “Thoma's theorem and representations of the infinite bisymmetric group”, Funct. Anal. Appl., 28:2 (1994), 100–107 | DOI | MR | Zbl
[14] G. I. Olshanski, “Unitary representations of the infinite symmetric group: a semigroup approach”, Representations of Lie Groups and Lie Algebras, Akad. Kiadó, Budapest, 1985, 181–197 | MR
[15] G. I. Olshanski, “Unitary representations of $(G,K)$-pairs connected with the infinite symmetric group $S(\infty)$”, Leningrad Math. J., 1:4 (1990), 983–1014 | MR | Zbl
[16] J. von Neumann, “On infinite direct products”, Compos. Math., 6 (1938), 1–77 ; Reprinted in: J. von Neumann, Collected Works | MR | Zbl
[17] E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61 | DOI | MR | Zbl
[18] A. M. Vershik, S. V. Kerov, “Characters and factor representations of the infinite symmetric group”, Sov. Math. Dokl., 23:2 (1981), 389–392 | MR | Zbl