Discrete Morse theory for the barycentric subdivision
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 52-64
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $F$ be a discrete Morse function on a simplicial complex $L$. We construct a discrete Morse function $\Delta(F)$ on the barycentric subdivision $\Delta(L)$. The constructed function $\Delta(F)$ “behaves the same way” as $F$, i.e., has the same number of critical simplices and the same gradient path structure.
@article{ZNSL_2017_462_a2,
author = {A. Zhukova},
title = {Discrete {Morse} theory for the barycentric subdivision},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {52--64},
year = {2017},
volume = {462},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a2/}
}
A. Zhukova. Discrete Morse theory for the barycentric subdivision. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 52-64. http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a2/
[1] R. Forman, “Morse theory for cell complexes”, Adv. Math., 134 (1998), 90–145 | DOI | MR | Zbl
[2] E. Gallais, “Combinatorial realization of the Thom–Smale complex via discrete Morse theory”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 9:2 (2010), 229–252 | MR | Zbl
[3] B. Benedetti, “Smoothing discrete Morse theory”, Ann. Sc. Norm. Super. Pisa Cl. Sc., 16:2 (2016), 335–368 | MR | Zbl
[4] E. Babson, P. Hersh, “Discrete Morse functions from lexicographic orders”, Trans. Amer. Math. Soc., 357:2 (2005), 509–534 | DOI | MR | Zbl