@article{ZNSL_2017_462_a1,
author = {A. M. Vershik and A. V. Malyutin},
title = {Infinite geodesics in the discrete {Heisenberg} group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {39--51},
year = {2017},
volume = {462},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a1/}
}
A. M. Vershik; A. V. Malyutin. Infinite geodesics in the discrete Heisenberg group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 39-51. http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a1/
[1] A. M. Vershik, “Zadacha o tsentralnykh merakh na prostranstvakh putei graduirovannykh grafov”, Funkts. analiz i ego pril., 48:4 (2014), 26–46 | DOI | MR | Zbl
[2] A. M. Vershik, “Osnaschennye graduirovannye grafy, proektivnye predely simpleksov i ikh granitsy”, Zap. nauchn. semin. POMI, 432, 2015, 83–104 | Zbl
[3] A. M. Vershik, A. V. Malyutin, “Fazovyi perekhod v zadache o granitse-vykhod dlya sluchainykh bluzhdanii na gruppakh”, Funkts. analiz i ego pril., 49:2 (2015), 7–20 | DOI | MR | Zbl
[4] A. M. Vershik, A. V. Malyutin, Absolyut konechno porozhdennykh grupp. I. Kommutativnye (polu)gruppy, Preprint, 2017
[5] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR
[6] M. Shapiro, “A geometric approach to the almost convexity and growth of some nilpotent groups”, Math. Ann., 285 (1989), 601–624 | DOI | MR | Zbl
[7] A. M. Vershik, “Intrinsic metric on graded graphs, standardness, and invariant measures”, Zap. nauchn. semin. POMI, 421, 2014, 58–67 | MR | Zbl