Infinite geodesics in the discrete Heisenberg group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 39-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give an exhaustive description of the family of infinite geodesics in the discrete Heisenberg group (with respect to the standard generating set). The classification of infinite geodesics is needed to describe the so-called absolute (exit boundary) of a group. The absolute of the discrete Heisenberg group will be described in a forthcoming paper.
@article{ZNSL_2017_462_a1,
     author = {A. M. Vershik and A. V. Malyutin},
     title = {Infinite geodesics in the discrete {Heisenberg} group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--51},
     year = {2017},
     volume = {462},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - A. V. Malyutin
TI  - Infinite geodesics in the discrete Heisenberg group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 39
EP  - 51
VL  - 462
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a1/
LA  - ru
ID  - ZNSL_2017_462_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%A A. V. Malyutin
%T Infinite geodesics in the discrete Heisenberg group
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 39-51
%V 462
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a1/
%G ru
%F ZNSL_2017_462_a1
A. M. Vershik; A. V. Malyutin. Infinite geodesics in the discrete Heisenberg group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 39-51. http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a1/

[1] A. M. Vershik, “Zadacha o tsentralnykh merakh na prostranstvakh putei graduirovannykh grafov”, Funkts. analiz i ego pril., 48:4 (2014), 26–46 | DOI | MR | Zbl

[2] A. M. Vershik, “Osnaschennye graduirovannye grafy, proektivnye predely simpleksov i ikh granitsy”, Zap. nauchn. semin. POMI, 432, 2015, 83–104 | Zbl

[3] A. M. Vershik, A. V. Malyutin, “Fazovyi perekhod v zadache o granitse-vykhod dlya sluchainykh bluzhdanii na gruppakh”, Funkts. analiz i ego pril., 49:2 (2015), 7–20 | DOI | MR | Zbl

[4] A. M. Vershik, A. V. Malyutin, Absolyut konechno porozhdennykh grupp. I. Kommutativnye (polu)gruppy, Preprint, 2017

[5] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR

[6] M. Shapiro, “A geometric approach to the almost convexity and growth of some nilpotent groups”, Math. Ann., 285 (1989), 601–624 | DOI | MR | Zbl

[7] A. M. Vershik, “Intrinsic metric on graded graphs, standardness, and invariant measures”, Zap. nauchn. semin. POMI, 421, 2014, 58–67 | MR | Zbl