Nonunitary representations of the groups of $U(p,q)$-currents for $q\geq p>1$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 5-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The purpose of this paper is to give a construction of representations of the group of currents for semisimple groups of rank greater than one. Such groups have no unitary representations in the Fock space, since the semisimple groups of this form have no nontrivial cohomology in faithful irreducible representations. Thus we first construct cohomology of the semisimple groups in nonunitary representations. The principal method is to reduce all constructions to Iwasawa subgroups (solvable subgroups of the semisimple groups), with subsequent extension to the original group. The resulting representation is realized in the so-called quasi-Poisson Hilbert space associated with natural measures on infinite-dimensional spaces.
@article{ZNSL_2017_462_a0,
     author = {A. M. Vershik and M. I. Graev},
     title = {Nonunitary representations of the groups of $U(p,q)$-currents for $q\geq p>1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--38},
     year = {2017},
     volume = {462},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a0/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - M. I. Graev
TI  - Nonunitary representations of the groups of $U(p,q)$-currents for $q\geq p>1$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 5
EP  - 38
VL  - 462
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a0/
LA  - ru
ID  - ZNSL_2017_462_a0
ER  - 
%0 Journal Article
%A A. M. Vershik
%A M. I. Graev
%T Nonunitary representations of the groups of $U(p,q)$-currents for $q\geq p>1$
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 5-38
%V 462
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a0/
%G ru
%F ZNSL_2017_462_a0
A. M. Vershik; M. I. Graev. Nonunitary representations of the groups of $U(p,q)$-currents for $q\geq p>1$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVIII, Tome 462 (2017), pp. 5-38. http://geodesic.mathdoc.fr/item/ZNSL_2017_462_a0/

[1] H. Araki, “Factorizable representation of current algebra. Non commutative extension of the Lévy–Kinchin formula and cohomology of a solvable group with values in a Hilbert space”, Publ. Res. Inst. Math. Sci., 5 (1969/1970), 361–422 | DOI | MR

[2] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Predstavleniya gruppy $SL(2,R)$, gde $R$ – koltso funktsii”, Uspekhi mat. nauk, 28:5 (1973), 83–128 | MR | Zbl

[3] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Neprivodimye predstavleniya gruppy $G^X$ i kogomologii”, Funkts. anal. i ego pril., 8:2 (1974), 67–69 | MR | Zbl

[4] I. M. Gelfand, M. I. Graev, A. M. Vershik, “Models of representations of current groups”, Representations of Lie Groups and Lie Algebras, ed. A. A. Kirillov, Akad. Kiado, Budapest, 1985, 121–179 | MR

[5] A. M. Vershik, S. I. Karpushev, “Kogomologii grupp v unitarnykh predstavleniyakh, okrestnost edinitsy i uslovno polozhitelno opredelennye funktsii”, Mat. sb., 119(161):4 (1982), 521–533 | MR | Zbl

[6] R. S. Ismagilov, Representations of Infinite-Dimensional Groups, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[7] K. R. Partasarathy, K. Schmidt, “Factorizable representations of current groups and the Araki–Woods embedding theorem”, Acta Math., 128 (1972), 53–41 | DOI | MR

[8] A. Guichardet, “Sur le cohomology des groupes topologiques”, Bull. Sci. Math., 98 (1974), 201–208 | MR

[9] P. Delorm, “1-cohomologie de représentations des groupes de Lie semi-simples et résolubles. Produits tensoriels continus de représentations”, Bull. Soc. Math. France, 105 (1977), 281–336 | DOI | MR | Zbl

[10] S. Albeverio, R. Hoegh-Krohn, D. Testard, A. Vershik, “Factorial representations of path groups”, J. Funct. Anal., 51:1 (1983), 115–131 | DOI | MR | Zbl

[11] A. M. Vershik, “Suschestvuet li mera Lebega v beskonechnomernom prostranstve?”, Trudy MIAN, 259, 2007, 256–281 | MR | Zbl

[12] A. Vershik, “Invariant measures for the continual Cartan subgroup”, J. Funct. Anal., 255:9 (2008), 2661–2682 | DOI | MR | Zbl

[13] M. I. Graev, A. M. Vershik, “The basic representation of the current group $O(n,1)^X$ in the $L^2$ space over the generalized Lebesgue measure.”, Indag. Math., 16:3/4 (2005), 499–529 | DOI | MR | Zbl

[14] A. M. Vershik, M. I. Graev, “Predstavleniya gruppy tokov gruppy $SO(n,1)$”, Funkts. anal. i ego pril., 39:2 (2005), 1–12 | DOI | MR | Zbl

[15] A. M. Vershik, M. I. Graev, “Spetsialnye predstavleniya grupp $SO(n,1)$ i $SU(n,1)$”, Uspekhi mat. nauk, 61:5 (2006), 3–88 | DOI | MR | Zbl

[16] A. M. Vershik, M. I. Graev, “Integralnye predstavleniya grupp tokov”, Funkts. anal. i ego pril., 42:1 (2008), 22–32 | DOI | MR | Zbl

[17] A. M. Vershik, M. I. Graev, “Integralnye modeli unitarnykh predstavlenii grupp tokov so znacheniyami v polupryamykh proizvedeniyakh”, Funkts. anal. i ego pril., 42:4 (2008), 37–49 | DOI | MR | Zbl

[18] A. M. Vershik, M. I. Graev, “Integralnye modeli unitarnykh predstavlenii grupp tokov so znacheniyami v poluprostykh gruppakh Li”, Uspekhi mat. nauk, 64:2(686) (2009), 5–72 | DOI | MR | Zbl

[19] A. M. Vershik, M. I. Graev, “Puassonova model fokovskogo prostranstva i predstavleniya grupp tokov”, Algebra i analiz, 23:3 (2011), 63–136 | MR | Zbl

[20] A. M. Vershik, M. I. Graev, “Osobye predstavleniya grupp $U(\infty,1)$ i $O(\infty,1)$ i svyazannye s nimi predstavleniya grupp tokov $U(\infty,1)^X$ i $O(\infty,1)^X$ v kvazipuassonovom prostranstve”, Funkts. anal. i ego pril., 46:1 (2012), 1–12 | DOI | MR | Zbl

[21] M. I. Graev, A. M. Vershik, “Representation of the infinite-dimensional groups of rank one”, Moscow Math. J., 12:3 (2012), 117–129

[22] M. I. Graev, A. M. Vershik, “Special representations of nilpotent Lie groups and the associated Poisson representations of current groups”, Moscow Math. J., 13:2 (2013), 345–360 | MR | Zbl

[23] A. M. Vershik, M. I. Graev, “Kogomologii v neunitarnykh predstavleniyakh poluprostykh grupp Li (gruppa $U(2,2)$)”, Funkts. anal. i ego pril., 48:3 (2014), 1–13 | DOI | MR | Zbl

[24] A. M. Vershik, M. I. Graev, “Kogomologii podgruppy Ivasavy grupp $U(p,p)$ v neunitarnykh predstavleniyakh”, Zap. nauchn. semin. POMI, 436, 2015, 112–121 | MR

[25] A. M. Vershik, M. I. Graev, “Osobye predstavleniya podgruppy Ivasavy poluprostoi gruppy Li”, Zap. nauchn. semin. POMI, 448, 2016, 96–106 | MR