Model of saccular aneurysm of the bifurcation node of the artery
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 174-194

Voir la notice de l'article provenant de la source Math-Net.Ru

Modified Kirchhoff conditions in the simple one-dimensional model of the branching artery developed by the authors, allow to describe an anomaly of its bifurcation node, congenital or acquired due to trauma or disease of the vessel wall. The pathology of the blood flow through the damaged node and the methods of determining the aneurysm parameters from data measured at the peripheral parts of the circulatory system by solving inverse problems are discussed.
@article{ZNSL_2017_461_a9,
     author = {V. A. Kozlov and S. A. Nazarov},
     title = {Model of saccular aneurysm of the bifurcation node of the artery},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--194},
     publisher = {mathdoc},
     volume = {461},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a9/}
}
TY  - JOUR
AU  - V. A. Kozlov
AU  - S. A. Nazarov
TI  - Model of saccular aneurysm of the bifurcation node of the artery
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 174
EP  - 194
VL  - 461
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a9/
LA  - ru
ID  - ZNSL_2017_461_a9
ER  - 
%0 Journal Article
%A V. A. Kozlov
%A S. A. Nazarov
%T Model of saccular aneurysm of the bifurcation node of the artery
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 174-194
%V 461
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a9/
%G ru
%F ZNSL_2017_461_a9
V. A. Kozlov; S. A. Nazarov. Model of saccular aneurysm of the bifurcation node of the artery. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 174-194. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a9/