Model of saccular aneurysm of the bifurcation node of the artery
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 174-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Modified Kirchhoff conditions in the simple one-dimensional model of the branching artery developed by the authors, allow to describe an anomaly of its bifurcation node, congenital or acquired due to trauma or disease of the vessel wall. The pathology of the blood flow through the damaged node and the methods of determining the aneurysm parameters from data measured at the peripheral parts of the circulatory system by solving inverse problems are discussed.
@article{ZNSL_2017_461_a9,
     author = {V. A. Kozlov and S. A. Nazarov},
     title = {Model of saccular aneurysm of the bifurcation node of the artery},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--194},
     year = {2017},
     volume = {461},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a9/}
}
TY  - JOUR
AU  - V. A. Kozlov
AU  - S. A. Nazarov
TI  - Model of saccular aneurysm of the bifurcation node of the artery
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 174
EP  - 194
VL  - 461
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a9/
LA  - ru
ID  - ZNSL_2017_461_a9
ER  - 
%0 Journal Article
%A V. A. Kozlov
%A S. A. Nazarov
%T Model of saccular aneurysm of the bifurcation node of the artery
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 174-194
%V 461
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a9/
%G ru
%F ZNSL_2017_461_a9
V. A. Kozlov; S. A. Nazarov. Model of saccular aneurysm of the bifurcation node of the artery. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 174-194. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a9/

[1] G. R. Kirchhoff, “Ueber den Durchgang eines elektrischen Stromes durch eine Ebene, insbesondere durch eine kreisformige”, Annalen der Physik und Chemie, 64:4 (1845), 497–514 | DOI

[2] L. Pauling, “The diamagnetic anisotropy of aromatic molecules”, J. Chem. Phys., 4 (1936), 672–678

[3] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | MR

[4] A. Bressan, S. Canic, M. Garavello, M. Herty, Piccoli B., “Flows on networks: recent results and perspectives”, European Mathematical Society (EMS Surveys in Mathematical Sciences), 1:1 (2014), 47–111 | DOI | MR | Zbl

[5] V. A. Kozlov, S. A. Nazarov, “Poverkhnostnaya entalpiya i uprugie svoistva krovenosnykh sosudov”, Doklady RAN, 441:1 (2011), 38–43 | MR

[6] V. A. Kozlov, S. A. Nazarov, “Asimptoticheskie modeli techeniya krovi v arteriyakh i venakh”, Zap. nauchn. semin. POMI, 409, 2012, 80–106 | MR

[7] V. A. Kozlov, S. A. Nazarov, “Prosteishaya odnomernaya model lozhnoi anevrizmy v bolshoi bedrennoi arterii”, Zap. nauchn. semin. POMI, 426, 2014, 64–86 | MR

[8] V. A. Kozlov, S. A. Nazarov, “Usloviya sopryazheniya v odnomernoi modeli razvetvlyayuscheisya arterii s uprugimi stenkami”, Zap. nauchn. semin. POMI, 438, 2015, 138–177 | MR

[9] V. A. Kozlov, S. A. Nazarov, “Asimptoticheskie modeli anizotropnykh neodnorodnykh uprugikh stenok krovenosnykh sosudov”, Problemy matem. analiza., 83, Novosibirsk, 2016, 93–110

[10] V. A. Kozlov, S. A. Nazarov, “Effektivnye odnomernye obrazy arterialnykh derevev iz krovenosnoi sistemy”, Doklady RAN, 473:2 (2017), 295–301 | DOI

[11] V. A. Kozlov, S. A. Nazarov, “Odnomernaya model techeniya v sochlenenii tonkikh kanalov v tom chisle arterialnykh derevev”, Matem. sbornik., 208:8 (2017), 56–105 | DOI | MR | Zbl

[12] H. Le Dret, “Modeling of the junction between two rods”, J. Math. Pures Appl., 68 (1989), 365–397 | MR | Zbl

[13] S. A. Nazarov, A. S. Slutskii, “Asimptoticheskii analiz proizvolnoi prostranstvennoi sistemy tonkikh sterzhnei”, Trudy Sankt-Peterburg. matem. o-va, 10, 2004, 63–115

[14] P. Kuchment (Ed.), Quantum graphs and their applications, Waves in Random media, 14, no. 1, Special issue, 2004 | MR

[15] P. Exner, H. Kovařík, Quantum Waveguides, Springer, Hidelberg, 2015 | MR | Zbl

[16] P. Kuchment, “Graph models for waves in thin structures”, Waves in Random Media, 12:12 (2002), R1–R24 | DOI | MR | Zbl

[17] P. Kuchment, O. Post, “On the spectrum of carbon nano-structures”, Communications in Mathematical Physics, 275:3 (2007), 805–826 | DOI | MR | Zbl

[18] E. Korotyaev, I. Lobanov, “Schrödinger operators on zigzag nanotubes”, Annales Henri Poincaré, 8:6 (2007), 1151–1176 | DOI | MR | Zbl

[19] A. V. Badanin, E. L. Korotyaev, “Ob odnom magnitnom operatore Shrëdingera na periodicheskom grafe”, Matem. sbornik, 201:10 (2010), 3–46 | DOI | MR | Zbl

[20] I. Y. Popov, A. N. Skorynina, I. V. Blinova, “On the existence of point spectrum for branching strips quantum graph”, J. Math. Phys., 55:3 (2014), 033504, 19 pp. | DOI | MR | Zbl

[21] V. A. Kozlov, S. A. Nazarov, A. Orlof, “Trapped modes supported by localized potentials in the zigzag graphene ribbon”, C. R. Acad. Sci. Paris. Sér. 1, 354:1 (2016), 63–67 | DOI | MR | Zbl

[22] S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559 | DOI | MR | Zbl

[23] D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. London Math. Soc., 97:3 (2008), 718–752 | DOI | MR | Zbl

[24] S. A. Nazarov, K. Ruotsalainen, P. Uusitalo, “Asymptotics of the spectrum of the Dirichlet Laplacian on a thin carbon nano-structure”, C. R. Mecanique, 343 (2015), 360–364 | DOI

[25] S. A. Nazarov, “Spektr pryamougolnykh reshetok kvantovykh volnovodov”, Izvestiya RAN. Seriya matem., 81:1 (2017), 31–92 | DOI | MR | Zbl

[26] F. L. Bakharev, S. G. Matveenko, S. A. Nazarov, “Diskretnyi spektr krestoobraznykh volnovodov”, Algebra i analiz, 28:2 (2016), 58–71 | MR

[27] F. S. Rofe-Beketov, “Samosopryazhennye rasshireniya differentsialnykh operatorov v prostranstve vektor-funktsii”, Doklady AN SSSR, 184 (1969), 1034–1037 | MR | Zbl

[28] B. S. Pavlov, “Teoriya rasshirenii i yavno reshaemye modeli”, Uspekhi matem. nauk, 42:6 (1987), 99–131 | MR | Zbl

[29] K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions”, J. Math. Anal. Appl., 449 (2017), 907–925 | DOI | MR | Zbl

[30] S. A. Nazarov, K. I. Piletskas, “Reinoldsovo techenie zhidkosti v tonkom trekhmernom kanale”, Litovskii matem. sbornik, 30:4 (1990), 772–783 | MR | Zbl

[31] S. A. Nazarov, K. Pileckas, “Asymptotic conditions at infinity for the Stokes and Navier–Stokes problems in domains with cylindrical outlets to infinity”, Quaderni di matematica, 4 (1999), 141–243 | MR | Zbl

[32] G. Panasenko, K. Pileckas, “Asymptotic analysis of the nonsteady viscous flow with a given flow rate in a thin pipe”, Applicable Analysis, 91:3 (2012), 559–574 | DOI | MR | Zbl

[33] G. Panasenko, K. Pileckas, “Flows in a tube structure: equation on the graph”, J. Math. Phys., 55 (2014), 081505 | DOI | MR | Zbl

[34] S. A. Nazarov, “The Navier–Stokes problem in thin or long tubes with periodically varying cross-section”, ZAMM, 80:9 (2000), 591–612 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[35] V. A. Kozlov, S. A. Nazarov, “Odnomernaya model vyazkouprugogo techeniya krovi v tonkom uprugom sosude”, Problemy matem. analiza., 78, Novosibirsk, 2015, 123–140 | Zbl

[36] Y. C. Fung, Biomechanics. Mechanical Properties of Living Tissues, Springer, New York–Berlin, 1993

[37] Y. C. Fung, Biomechanics. Circulation, Second edition, Springer, New York–Berlin, 2011

[38] F. Berntsson, M. Karlsson, V. Kozlov, S. A. Nazarov, “A one-dimensional model of viscous blood flow in an elastic vessel”, Appl. Math. Comput., 274 (2016), 125–132 | MR

[39] F. Berntsson, M. Karlsson, V. Kozlov, S. A. Nazarov, “A one-dimensional model of a false aneurysm”, Int. J. Research in Engineering and Sci., 6:5 (2017), 61–73 | MR

[40] J. PHornak, The Basics of MRI, Interactive Learning Software, 2008

[41] V. A. Kozlov, S. A. Nazarov, G. Zavorokhin, “A fractal graph model of capillary type systems”, Complex Variables and Elliptic Equations (to appear)