Leontovich–Fock parabolic equation method in the Neumann diffracion problem on a prolate body of revolution
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 148-173 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper continues the series of publications on the shortwave diffraction of the plane wave on the prolate bodies of revolution with axial symmetry in Neumann problem. The approach which is based on Leontovich–Fock parabolic equation method for the two parameter asymptotic expansion of the solution is briefly described. Two correction terms are found for the Fock's main integral term of the solution expansion in the boundary layer. This solution can be continuously transformed into the ray solution in the lit zone and decays exponentially in the shadow zone. If the observation point is in the shadow zone near the scatterer, then the wave field can be obtained with the help of residue theory for the integrals of the reflected field, because the incident field does not reach the shadow zone. The obtained residues are necessary for the unique construction of the creeping waves in the boundary layer of the scatterer in the shadow zone.
@article{ZNSL_2017_461_a8,
     author = {A. S. Kirpichnikova and N. Ya. Kirpichnikova},
     title = {Leontovich{\textendash}Fock parabolic equation method in the {Neumann} diffracion problem on a~prolate body of revolution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {148--173},
     year = {2017},
     volume = {461},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a8/}
}
TY  - JOUR
AU  - A. S. Kirpichnikova
AU  - N. Ya. Kirpichnikova
TI  - Leontovich–Fock parabolic equation method in the Neumann diffracion problem on a prolate body of revolution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 148
EP  - 173
VL  - 461
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a8/
LA  - ru
ID  - ZNSL_2017_461_a8
ER  - 
%0 Journal Article
%A A. S. Kirpichnikova
%A N. Ya. Kirpichnikova
%T Leontovich–Fock parabolic equation method in the Neumann diffracion problem on a prolate body of revolution
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 148-173
%V 461
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a8/
%G ru
%F ZNSL_2017_461_a8
A. S. Kirpichnikova; N. Ya. Kirpichnikova. Leontovich–Fock parabolic equation method in the Neumann diffracion problem on a prolate body of revolution. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 148-173. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a8/

[1] V. A. Fock, Electromagnetic Diffraction and Propagation Problems, International Series of Monographs on Electromagnetic Waves, 1, Pergamon Press, 1965 | MR

[2] I. V. Andronov, “Diffraction of strongly elongation body of revolution”, Acoustic Physics, 57:2 (2011), 147–152 | DOI

[3] I. V. Andronov, “Diffraction of a plane wave incident at a small angle to the axis of a strongly elongation spheroid”, Acoustic Physics, 58:5 (2012), 521–529 | DOI

[4] N. Ya. Kirpichnikova, M. M. Popov, “The Leontovich-Fock parabolic equation method in problems of short-wave diffraction by prolate bodies”, J. Mathem. Sciences, 194:42 (2013), 30–43 | DOI | MR | Zbl

[5] N. Ya. Kirpichnikova, M. M. Popov, N. M. Semtchenok, “On short-wave diffraction by an elongated body. Numerical experiments”, Zap. Nauchn. Sem. POMI, 451, 2016, 65–78 | MR

[6] M. M. Popov, N. Ya. Kirpichnikova, “On problems of applying the parabolic equation to diffraction by prolate bodies”, Acoustical Physics, 60:4 (2014), 363–370 | DOI

[7] N. Ya. Kirpichnikova, M. M. Popov, “Merging of asymptotics in the illuminated part of the Fock domain”, J. Math. Sciences, 214:3 (2016), 277–286 | DOI | MR | Zbl

[8] V. M. Babich, N. Ya. Kirpichnikova, The Boundary-Layer Method in Diffraction Problems, Springer-Verlag, 1979 | MR | Zbl

[9] V. M. Babich, V. Buldyrev, Asymptotic Methods in Short-Wavelength Diffraction Theory, Alpha Science, Oxford, 2007 | MR

[10] V. M. Babich, “On short wavelength asymptotics of Green's function for the exterior of a compact convex domain”, Dokl. AN SSSR, 146:3 (1962), 571–573 | MR | Zbl

[11] N. Ya. Kirpichnikova, “On propagation of surface waves, which are concentrated in the vicinity of rays in an inhomogeneous elastic body of arbitrary shape”, Trudy MIAN, 115, 1971, 114–130 | MR | Zbl

[12] V. S. Buslaev, “Short-wavelength asymptotics in the problem of diffraction by smooth convex contours”, Trudy MIAN, 73, 1964, 14–117 | MR

[13] V. B. Philippov, “On mathematical justification of the short wavelength asymptotics of the diffraction problem in shadow zone”, J. Soviet Mathematics, 6:5 (1976), 577–626 | DOI

[14] V. S. Ivanov, “Calculation of corrections to the Fock's asymptotic formula for the wave field in a neighborhood of surfaces of circular cylinder and a sphere”, J. Soviet Mathematics, 20:1 (1982), 1812–1817 | DOI | Zbl

[15] F. G. Friedlander, J. B. Keller, “Asymptotic expansion of solution of $(\nabla^2+k^2)u=0$”, Comm. Pure Appl. Math., 8:3 (1955), 378–394 | MR

[16] J. B. Keller, “Diffraction by a convex cylinder”, Trans. IRE Ant. and Prop., 4:3 (1956), 312–321 | DOI | MR