@article{ZNSL_2017_461_a8,
author = {A. S. Kirpichnikova and N. Ya. Kirpichnikova},
title = {Leontovich{\textendash}Fock parabolic equation method in the {Neumann} diffracion problem on a~prolate body of revolution},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {148--173},
year = {2017},
volume = {461},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a8/}
}
TY - JOUR AU - A. S. Kirpichnikova AU - N. Ya. Kirpichnikova TI - Leontovich–Fock parabolic equation method in the Neumann diffracion problem on a prolate body of revolution JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 148 EP - 173 VL - 461 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a8/ LA - ru ID - ZNSL_2017_461_a8 ER -
%0 Journal Article %A A. S. Kirpichnikova %A N. Ya. Kirpichnikova %T Leontovich–Fock parabolic equation method in the Neumann diffracion problem on a prolate body of revolution %J Zapiski Nauchnykh Seminarov POMI %D 2017 %P 148-173 %V 461 %U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a8/ %G ru %F ZNSL_2017_461_a8
A. S. Kirpichnikova; N. Ya. Kirpichnikova. Leontovich–Fock parabolic equation method in the Neumann diffracion problem on a prolate body of revolution. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 148-173. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a8/
[1] V. A. Fock, Electromagnetic Diffraction and Propagation Problems, International Series of Monographs on Electromagnetic Waves, 1, Pergamon Press, 1965 | MR
[2] I. V. Andronov, “Diffraction of strongly elongation body of revolution”, Acoustic Physics, 57:2 (2011), 147–152 | DOI
[3] I. V. Andronov, “Diffraction of a plane wave incident at a small angle to the axis of a strongly elongation spheroid”, Acoustic Physics, 58:5 (2012), 521–529 | DOI
[4] N. Ya. Kirpichnikova, M. M. Popov, “The Leontovich-Fock parabolic equation method in problems of short-wave diffraction by prolate bodies”, J. Mathem. Sciences, 194:42 (2013), 30–43 | DOI | MR | Zbl
[5] N. Ya. Kirpichnikova, M. M. Popov, N. M. Semtchenok, “On short-wave diffraction by an elongated body. Numerical experiments”, Zap. Nauchn. Sem. POMI, 451, 2016, 65–78 | MR
[6] M. M. Popov, N. Ya. Kirpichnikova, “On problems of applying the parabolic equation to diffraction by prolate bodies”, Acoustical Physics, 60:4 (2014), 363–370 | DOI
[7] N. Ya. Kirpichnikova, M. M. Popov, “Merging of asymptotics in the illuminated part of the Fock domain”, J. Math. Sciences, 214:3 (2016), 277–286 | DOI | MR | Zbl
[8] V. M. Babich, N. Ya. Kirpichnikova, The Boundary-Layer Method in Diffraction Problems, Springer-Verlag, 1979 | MR | Zbl
[9] V. M. Babich, V. Buldyrev, Asymptotic Methods in Short-Wavelength Diffraction Theory, Alpha Science, Oxford, 2007 | MR
[10] V. M. Babich, “On short wavelength asymptotics of Green's function for the exterior of a compact convex domain”, Dokl. AN SSSR, 146:3 (1962), 571–573 | MR | Zbl
[11] N. Ya. Kirpichnikova, “On propagation of surface waves, which are concentrated in the vicinity of rays in an inhomogeneous elastic body of arbitrary shape”, Trudy MIAN, 115, 1971, 114–130 | MR | Zbl
[12] V. S. Buslaev, “Short-wavelength asymptotics in the problem of diffraction by smooth convex contours”, Trudy MIAN, 73, 1964, 14–117 | MR
[13] V. B. Philippov, “On mathematical justification of the short wavelength asymptotics of the diffraction problem in shadow zone”, J. Soviet Mathematics, 6:5 (1976), 577–626 | DOI
[14] V. S. Ivanov, “Calculation of corrections to the Fock's asymptotic formula for the wave field in a neighborhood of surfaces of circular cylinder and a sphere”, J. Soviet Mathematics, 20:1 (1982), 1812–1817 | DOI | Zbl
[15] F. G. Friedlander, J. B. Keller, “Asymptotic expansion of solution of $(\nabla^2+k^2)u=0$”, Comm. Pure Appl. Math., 8:3 (1955), 378–394 | MR
[16] J. B. Keller, “Diffraction by a convex cylinder”, Trans. IRE Ant. and Prop., 4:3 (1956), 312–321 | DOI | MR