The weak solutions of Hopf type to 2D Maxwell flows with infinite number of relaxation times
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 140-147
Voir la notice de l'article provenant de la source Math-Net.Ru
The system of equations, describing motion of fluids of Maxwell type is considered
$$
\frac\partial{\partial t}v+v\cdot\nabla v-\int_0^t K(t-\tau)\Delta v(x,\tau)\,d\tau+\nabla p=f(x,t),\quad\operatorname{div}v=0.
$$
Here $K(t)$ is exponential series $K(t)=\sum_{s=1}^\infty\beta_se ^{-\alpha_st}$. The existence of weak solution for initial boundary value problem
$$
v(x,0)=v_0(x),\quad v\cdot n|_{\partial\Omega}=0,\quad\operatorname{rot}v|_{\partial\Omega}=0
$$
is proved.
@article{ZNSL_2017_461_a7,
author = {N. A. Karazeeva},
title = {The weak solutions of {Hopf} type to {2D} {Maxwell} flows with infinite number of relaxation times},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {140--147},
publisher = {mathdoc},
volume = {461},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a7/}
}
TY - JOUR AU - N. A. Karazeeva TI - The weak solutions of Hopf type to 2D Maxwell flows with infinite number of relaxation times JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 140 EP - 147 VL - 461 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a7/ LA - en ID - ZNSL_2017_461_a7 ER -
N. A. Karazeeva. The weak solutions of Hopf type to 2D Maxwell flows with infinite number of relaxation times. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 140-147. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a7/