The weak solutions of Hopf type to 2D Maxwell flows with infinite number of relaxation times
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 140-147

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of equations, describing motion of fluids of Maxwell type is considered $$ \frac\partial{\partial t}v+v\cdot\nabla v-\int_0^t K(t-\tau)\Delta v(x,\tau)\,d\tau+\nabla p=f(x,t),\quad\operatorname{div}v=0. $$ Here $K(t)$ is exponential series $K(t)=\sum_{s=1}^\infty\beta_se ^{-\alpha_st}$. The existence of weak solution for initial boundary value problem $$ v(x,0)=v_0(x),\quad v\cdot n|_{\partial\Omega}=0,\quad\operatorname{rot}v|_{\partial\Omega}=0 $$ is proved.
@article{ZNSL_2017_461_a7,
     author = {N. A. Karazeeva},
     title = {The weak solutions of {Hopf} type to {2D} {Maxwell} flows with infinite number of relaxation times},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--147},
     publisher = {mathdoc},
     volume = {461},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a7/}
}
TY  - JOUR
AU  - N. A. Karazeeva
TI  - The weak solutions of Hopf type to 2D Maxwell flows with infinite number of relaxation times
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 140
EP  - 147
VL  - 461
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a7/
LA  - en
ID  - ZNSL_2017_461_a7
ER  - 
%0 Journal Article
%A N. A. Karazeeva
%T The weak solutions of Hopf type to 2D Maxwell flows with infinite number of relaxation times
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 140-147
%V 461
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a7/
%G en
%F ZNSL_2017_461_a7
N. A. Karazeeva. The weak solutions of Hopf type to 2D Maxwell flows with infinite number of relaxation times. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 140-147. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a7/