Comparison of asymptotic and numerical approaches to the study of the resonant tunneling in a~two-dimensional symmetric quantum waveguide of variable cross-section
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 124-139
Voir la notice de l'article provenant de la source Math-Net.Ru
The waveguide coincides with a strip having two narrows of width $\varepsilon$. An electron wave function satisfies the Dirichlet boundary value problem for the Helmholtz equation. The part of the waveguide between the narrows serves as a resonator and conditions for the electron resonant tunneling can occur. In the paper, asymptotic formulas as $\varepsilon\to0$ for characteristics of the resonant tunneling are used. The asymptotic results are compared with numerical ones obtained with approximate calculation of the scattering matrix for energies in the interval between the second and the third thresholds. The comparison allows to state an interval of $\varepsilon$, where the asymptotic and numerical approaches agree. The suggested methods can be applied to more complicated models than one considered in the paper. In particular, the same approach can be used for asymptotic and numerical analysis of the tunneling in three-dimensional quantum waveguides of variable cross-section.
@article{ZNSL_2017_461_a6,
author = {M. M. Kabardov and B. A. Plamenevskiy and O. V. Sarafanov and N. M. Sharkova},
title = {Comparison of asymptotic and numerical approaches to the study of the resonant tunneling in a~two-dimensional symmetric quantum waveguide of variable cross-section},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {124--139},
publisher = {mathdoc},
volume = {461},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a6/}
}
TY - JOUR AU - M. M. Kabardov AU - B. A. Plamenevskiy AU - O. V. Sarafanov AU - N. M. Sharkova TI - Comparison of asymptotic and numerical approaches to the study of the resonant tunneling in a~two-dimensional symmetric quantum waveguide of variable cross-section JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 124 EP - 139 VL - 461 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a6/ LA - ru ID - ZNSL_2017_461_a6 ER -
%0 Journal Article %A M. M. Kabardov %A B. A. Plamenevskiy %A O. V. Sarafanov %A N. M. Sharkova %T Comparison of asymptotic and numerical approaches to the study of the resonant tunneling in a~two-dimensional symmetric quantum waveguide of variable cross-section %J Zapiski Nauchnykh Seminarov POMI %D 2017 %P 124-139 %V 461 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a6/ %G ru %F ZNSL_2017_461_a6
M. M. Kabardov; B. A. Plamenevskiy; O. V. Sarafanov; N. M. Sharkova. Comparison of asymptotic and numerical approaches to the study of the resonant tunneling in a~two-dimensional symmetric quantum waveguide of variable cross-section. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 124-139. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a6/