Justification of the wavelet-based integral representation of a~solution of the wave equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 107-123

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the previously obtained integral representation of a solution of the wave equation. The integrand contains the weighted localized solutions of the wave equation, which depend on integration variables. We construct the parameterized family of the localized solutions from the chosen one by employing the transformations of shift, dilation and the Lorentz transform. We give the sufficient conditions of the pointwise convergence for the obtained improper integral. The convergence in the $\mathcal L_2$ sense is proven too.
@article{ZNSL_2017_461_a5,
     author = {E. A. Gorodnitskiy and M. V. Perel},
     title = {Justification of the wavelet-based integral representation of a~solution of the wave equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {107--123},
     publisher = {mathdoc},
     volume = {461},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a5/}
}
TY  - JOUR
AU  - E. A. Gorodnitskiy
AU  - M. V. Perel
TI  - Justification of the wavelet-based integral representation of a~solution of the wave equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 107
EP  - 123
VL  - 461
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a5/
LA  - ru
ID  - ZNSL_2017_461_a5
ER  - 
%0 Journal Article
%A E. A. Gorodnitskiy
%A M. V. Perel
%T Justification of the wavelet-based integral representation of a~solution of the wave equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 107-123
%V 461
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a5/
%G ru
%F ZNSL_2017_461_a5
E. A. Gorodnitskiy; M. V. Perel. Justification of the wavelet-based integral representation of a~solution of the wave equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 107-123. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a5/