Local boundary controllability in classes of differentiable functions for the wave equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 52-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The well-known fact following from the Holmgren–John–Tataru uniqueness theorem is a local approximate boundary $L_2$-controllability of the dynamical system governed by the wave equation. Generalizing this result, we establish the controllability in certain classes of differentiable functions in the domains filled up with waves.
@article{ZNSL_2017_461_a2,
     author = {M. I. Belishev},
     title = {Local boundary controllability in classes of differentiable functions for the wave equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {52--64},
     year = {2017},
     volume = {461},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a2/}
}
TY  - JOUR
AU  - M. I. Belishev
TI  - Local boundary controllability in classes of differentiable functions for the wave equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 52
EP  - 64
VL  - 461
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a2/
LA  - ru
ID  - ZNSL_2017_461_a2
ER  - 
%0 Journal Article
%A M. I. Belishev
%T Local boundary controllability in classes of differentiable functions for the wave equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 52-64
%V 461
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a2/
%G ru
%F ZNSL_2017_461_a2
M. I. Belishev. Local boundary controllability in classes of differentiable functions for the wave equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 52-64. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a2/

[1] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl

[2] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl

[3] M. I. Belishev, A. N. Dolgoborodov, Lokalnaya granichnaya upravlyaemost v klassakh gladkikh funktsii dlya volnovogo uravneniya, Preprint – 1/1997, PDMI, 1997, 9 pp.

[4] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izdatelstvo Lan, S.-Peterburg–Moskva–Krasnodar, 2010 | MR

[5] M. Ikawa, Hyperbolic PDEs and Wave Phenomena, Translations of Mathematical Monographs, 189, AMS, Providence, Rhode Island, 1997 | MR

[6] I. Lasiecka, J-L. Lions, R. Triggiani, “Non homogeneous boundary value problems for second order hyperbolic operators”, J. Math. Pures Appl., 65:3 (1986), 142–192 | MR

[7] I. Lasiecka, R. Triggiani, “Recent advances in regularity of second-order hyperbolic mixed problems, and applications”, Dynamics reported. Expositions in dynamical systems, v. 3, eds. C. K. R. T. Jones et al., Springer-Verlag, Berlin, 1994, 104–162 | DOI | Zbl

[8] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, Moskva, 1971 | MR

[9] D. L. Russell, “Boundary value control theory of the higher-dimensional wave equation”, SIAM J. Control, 9 (1971), 29–42 | DOI | MR | Zbl

[10] D. Tataru, “Unique continuation for solutions to PDE's: between Hormander's and Holmgren's theorem”, Comm. PDE, 20 (1995), 855–884 | DOI | MR | Zbl