@article{ZNSL_2017_461_a2,
author = {M. I. Belishev},
title = {Local boundary controllability in classes of differentiable functions for the wave equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {52--64},
year = {2017},
volume = {461},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a2/}
}
M. I. Belishev. Local boundary controllability in classes of differentiable functions for the wave equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 52-64. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a2/
[1] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl
[2] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl
[3] M. I. Belishev, A. N. Dolgoborodov, Lokalnaya granichnaya upravlyaemost v klassakh gladkikh funktsii dlya volnovogo uravneniya, Preprint – 1/1997, PDMI, 1997, 9 pp.
[4] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izdatelstvo Lan, S.-Peterburg–Moskva–Krasnodar, 2010 | MR
[5] M. Ikawa, Hyperbolic PDEs and Wave Phenomena, Translations of Mathematical Monographs, 189, AMS, Providence, Rhode Island, 1997 | MR
[6] I. Lasiecka, J-L. Lions, R. Triggiani, “Non homogeneous boundary value problems for second order hyperbolic operators”, J. Math. Pures Appl., 65:3 (1986), 142–192 | MR
[7] I. Lasiecka, R. Triggiani, “Recent advances in regularity of second-order hyperbolic mixed problems, and applications”, Dynamics reported. Expositions in dynamical systems, v. 3, eds. C. K. R. T. Jones et al., Springer-Verlag, Berlin, 1994, 104–162 | DOI | Zbl
[8] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, Moskva, 1971 | MR
[9] D. L. Russell, “Boundary value control theory of the higher-dimensional wave equation”, SIAM J. Control, 9 (1971), 29–42 | DOI | MR | Zbl
[10] D. Tataru, “Unique continuation for solutions to PDE's: between Hormander's and Holmgren's theorem”, Comm. PDE, 20 (1995), 855–884 | DOI | MR | Zbl