Local boundary controllability in classes of differentiable functions for the wave equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 52-64

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known fact following from the Holmgren–John–Tataru uniqueness theorem is a local approximate boundary $L_2$-controllability of the dynamical system governed by the wave equation. Generalizing this result, we establish the controllability in certain classes of differentiable functions in the domains filled up with waves.
@article{ZNSL_2017_461_a2,
     author = {M. I. Belishev},
     title = {Local boundary controllability in classes of differentiable functions for the wave equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {52--64},
     publisher = {mathdoc},
     volume = {461},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a2/}
}
TY  - JOUR
AU  - M. I. Belishev
TI  - Local boundary controllability in classes of differentiable functions for the wave equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 52
EP  - 64
VL  - 461
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a2/
LA  - ru
ID  - ZNSL_2017_461_a2
ER  - 
%0 Journal Article
%A M. I. Belishev
%T Local boundary controllability in classes of differentiable functions for the wave equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 52-64
%V 461
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a2/
%G ru
%F ZNSL_2017_461_a2
M. I. Belishev. Local boundary controllability in classes of differentiable functions for the wave equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 52-64. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a2/