On minimal entire solutions of the one-dimensional difference Schr\"odinger equation with the potential $v(z)=e^{-2\pi iz}$
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 279-297
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $z\in\mathbb C$ be the complex variable, and let $h\in(0,1)$ and $p\in\mathbb C$ be parameters. For the equation
$$
\psi(z+h)+\psi(z-h)+e^{-2\pi iz}\psi(z)=2\cos(2\pi p)\psi(z),
$$
we study its entire solutions that have the minimal possible growth both as $\operatorname{Im}z\to+\infty$ and as $\operatorname{Im}z\to-\infty$. In particular, we showed that they satisfy one more difference equation:
$$
\psi(z+1)+\psi(z-1)+e^{-2\pi iz/h}\psi(z)=2\cos(2\pi p/h)\psi(z).
$$
@article{ZNSL_2017_461_a15,
author = {A. A. Fedotov},
title = {On minimal entire solutions of the one-dimensional difference {Schr\"odinger} equation with the potential~$v(z)=e^{-2\pi iz}$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {279--297},
publisher = {mathdoc},
volume = {461},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a15/}
}
TY - JOUR
AU - A. A. Fedotov
TI - On minimal entire solutions of the one-dimensional difference Schr\"odinger equation with the potential $v(z)=e^{-2\pi iz}$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2017
SP - 279
EP - 297
VL - 461
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a15/
LA - ru
ID - ZNSL_2017_461_a15
ER -
%0 Journal Article
%A A. A. Fedotov
%T On minimal entire solutions of the one-dimensional difference Schr\"odinger equation with the potential $v(z)=e^{-2\pi iz}$
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 279-297
%V 461
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a15/
%G ru
%F ZNSL_2017_461_a15
A. A. Fedotov. On minimal entire solutions of the one-dimensional difference Schr\"odinger equation with the potential $v(z)=e^{-2\pi iz}$. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 279-297. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a15/