@article{ZNSL_2017_461_a15,
author = {A. A. Fedotov},
title = {On minimal entire solutions of the one-dimensional difference {Schr\"odinger} equation with the potential $v(z)=e^{-2\pi iz}$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {279--297},
year = {2017},
volume = {461},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a15/}
}
TY - JOUR
AU - A. A. Fedotov
TI - On minimal entire solutions of the one-dimensional difference Schrödinger equation with the potential $v(z)=e^{-2\pi iz}$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2017
SP - 279
EP - 297
VL - 461
UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a15/
LA - ru
ID - ZNSL_2017_461_a15
ER -
%0 Journal Article
%A A. A. Fedotov
%T On minimal entire solutions of the one-dimensional difference Schrödinger equation with the potential $v(z)=e^{-2\pi iz}$
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 279-297
%V 461
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a15/
%G ru
%F ZNSL_2017_461_a15
A. A. Fedotov. On minimal entire solutions of the one-dimensional difference Schrödinger equation with the potential $v(z)=e^{-2\pi iz}$. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 279-297. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a15/
[1] V. M. Babich, M. A. Lyalinov, V. E. Grikurov, Metod Zommerfelda-Malyuzhintsa v teorii difraktsii, Sankt-Peterburgskii gosudarstvennyi Universitet, 2004
[2] V. S. Buslaev, A. A. Fedotov, “Blokhovskie resheniya raznostnykh uravnenii”, Algebra i Analiz, 7:4 (1995), 74–122 | MR | Zbl
[3] V. Buslaev, A. Fedotov, “Spectral properties of the monodromy matrix for Harper equation”, Journées Équations aux dérivées partielles, 1996, 1–11 | MR
[4] V. Buslaev, A. Fedotov, “On the difference equations with periodic coefficients”, Advances in Theor. and Math. Physics, 5:6 (2001), 1105–1168 | DOI | MR | Zbl
[5] L. Faddeev, R. Kashaev, A. Volkov, “Strongly coupled quantum discrete Liouville theory. I. Algebraic approach and duality”, Commun. Math. Phys., 219 (2001), 199–219 | DOI | MR | Zbl
[6] A. Fedotov, F. Klopp, “Pointwise Existence of the Lyapunov Exponent for a Quasiperiodic Equation”, Mathematical results in quantum mechanics, eds. Ingrid Beltita, Gheorghe Nenciu, Radu Purice, World Sci. Pub., 2008, 55–66 | MR
[7] A. Fedotov, F. Klopp, “An exact renormalization formula for Gaussian exponential sums and applications”, Amer. J. Math., 134:3 (2012), 711–748 | DOI | MR | Zbl
[8] A. Fedotov, F. Sandomirskiy, “An exact renormalization formula for the Maryland model”, Commun. Math. Phys., 334:2 (2015), 1083–1099 | DOI | MR | Zbl
[9] A. A. Fedotov, “Monodromizatsiya i raznostnye uravneniya s meromorfnymi periodicheskimi koeffitsientami”, Funk. analiz i ego prilozh. (to appear) | DOI
[10] A. A. Fedotov, “Matritsa monodromii dlya uravneniya pochti-Mate s maloi konstantoi svyazi”, Funktsionalnyi analiz i ego prilozheniya (to appear)
[11] A. A. Fedotov, “Kvaziklassicheskie asimptotiki funktsii Malyuzhintsa”, Zap. nauchn. sem. POMI, 451, 2016, 178–187 | MR
[12] S. Ruijsenaars, “On Barnes multiple zeta and gamma functions”, Adv. Math., 156 (2000), 107–132 | DOI | MR | Zbl
[13] M. Wilkinson, “Critical properties of electron eigenstates in incommensurate systems”, Phys. D, 21 (1986), 341–354 | DOI | MR | Zbl