Asymptotics of the resonant tunneling of high-energy electrons in two-dimensional quantum waveguides of variable cross-section
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 260-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The waveguide occupies a strip in $\mathbb R^2$ having two identical narrows of small diameter $\varepsilon$. An electron wave function satisfies the Helmholtz equation with the homogeneous Dirichlet boundary condition. The energy of electrons may be rather high, i.e. any (fixed) number of waves can propagate in the strip far from the narrows. As $\varepsilon\to0$, a neighbourhood of a narrow is supposed to transform into a neighbourhood of the common vertex of two vertical angles. The part of the waveguide between the narrows as $\varepsilon=0$ is called the resonator. An asymptotics of the transition coefficient is obtained in the waveguide as $\varepsilon\to0$. Near a degenerate eigenvalue of the resonator, the leading term of the asymptotics has two sharp peaks. Position and shape of the resonant peaks are described.
@article{ZNSL_2017_461_a14,
     author = {O. V. Sarafanov},
     title = {Asymptotics of the resonant tunneling of high-energy electrons in two-dimensional quantum waveguides of variable cross-section},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {260--278},
     year = {2017},
     volume = {461},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a14/}
}
TY  - JOUR
AU  - O. V. Sarafanov
TI  - Asymptotics of the resonant tunneling of high-energy electrons in two-dimensional quantum waveguides of variable cross-section
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 260
EP  - 278
VL  - 461
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a14/
LA  - ru
ID  - ZNSL_2017_461_a14
ER  - 
%0 Journal Article
%A O. V. Sarafanov
%T Asymptotics of the resonant tunneling of high-energy electrons in two-dimensional quantum waveguides of variable cross-section
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 260-278
%V 461
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a14/
%G ru
%F ZNSL_2017_461_a14
O. V. Sarafanov. Asymptotics of the resonant tunneling of high-energy electrons in two-dimensional quantum waveguides of variable cross-section. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 260-278. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a14/

[1] L. M. Baskin, P. Neittaanmäki, B. A. Plamenevskii, A. A. Pozharskii, “On electron transport in 3D quantum waveguides of variable cross-section”, Nanotechnology, 17 (2006), 19–23 | DOI

[2] L. M. Baskin, P. Neittaanmäki, B. A. Plamenevskii, O. V. Sarafanov, “Asymptotic theory of resonant tunneling in 3D quantum waveguides of variable cross-section”, SIAM J. Appl. Math., 70:5 (2009), 1542–1566 | DOI | MR | Zbl

[3] Computational Math. and Math. Physics, 53:11 (2013), 1664–1683 | DOI | DOI | MR | Zbl

[4] J. of Math. Sciences, 196:4 (2014), 469–489 | DOI | MR | Zbl

[5] L. Baskin, M. Kabardov, P. Neittaanmäki, O. Sarafanov, “Asymptotic and numerical study of electron flow spin-polarization in 2D waveguides of variable cross-section in the presence of magnetic field”, Mathematical Methods in the Applied Sciences, 37:7 (2013), 1072–1092 | DOI | MR

[6] L. M. Baskin, P. Neittaanmäki, B. A. Plamenevskii, Semiconductor device and method to control the states of the semiconductor device and to manufacture the same, Patent 121489, Finland, 2010

[7] L. M. Baskin, P. Neittaanmäki, B. A. Plamenevskii, A. A. Pozharskii, Arrangement in a waveguide branch for channeling an electron flow and corresponding method, Patent 122219, Finland, 2011

[8] L. M. Baskin, M. M. Kabardov, P. Neittaanmäki, B. A. Plamenevskii, O. V. Sarafanov, Device for detecting magnetic fields, Patent 124670 B, Finland, 2013

[9] L. Baskin, P. Neittaanmäki, B. Plamenevskii, O. Sarafanov, Resonant Tunneling: Quantum Waveguides of Variable Cross-Sections, Asymptotics, Numerics, and Applications, Lecture Notes on Numerical Methods in Engineering and Sciences, Springer, 2015 | DOI | MR

[10] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991