On an inverse dynamic problem for the wave equation with a potential on a real line
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 212-231 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the inverse dynamic problem for the wave equation with a potential on a real line. The forward initial-boundary value problem is set up with a help of boundary triplets. As an inverse data we use an analog of a response operator (dynamic Dirichlet-to-Neumann map). We derive equations of inverse problem and also point out the relationship between dynamic inverse problem and spectral inverse problem from a matrix-valued measure.
@article{ZNSL_2017_461_a11,
     author = {A. S. Mikhaylov and V. S. Mikhaylov},
     title = {On an inverse dynamic problem for the wave equation with a~potential on a~real line},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {212--231},
     year = {2017},
     volume = {461},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a11/}
}
TY  - JOUR
AU  - A. S. Mikhaylov
AU  - V. S. Mikhaylov
TI  - On an inverse dynamic problem for the wave equation with a potential on a real line
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 212
EP  - 231
VL  - 461
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a11/
LA  - en
ID  - ZNSL_2017_461_a11
ER  - 
%0 Journal Article
%A A. S. Mikhaylov
%A V. S. Mikhaylov
%T On an inverse dynamic problem for the wave equation with a potential on a real line
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 212-231
%V 461
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a11/
%G en
%F ZNSL_2017_461_a11
A. S. Mikhaylov; V. S. Mikhaylov. On an inverse dynamic problem for the wave equation with a potential on a real line. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 212-231. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a11/

[1] S. A. Avdonin, V. S. Mikhaylov, “The boundary control approach to inverse spectral theory”, Inverse Problems, 26:4 (2010), 045009, 19 pp. | DOI | MR | Zbl

[2] S. A. Avdonin, V. S. Mikhaylov, A. V. Rybkin, “The boundary control approach to the Titchmarsh–Weyl $m$-function”, Comm. Math. Phys., 275:3 (2007), 791–803 | DOI | MR | Zbl

[3] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl

[4] M. I. Belishev, “On relation between spectral and dynamical inverse data”, J. Inv. Ill-posed problems, 9:6 (2001), 647–665 | DOI | MR

[5] J. Math. Sci. (N. Y.), 127:6 (2005), 2353–2363 | DOI | MR | Zbl

[6] J. Math. Sci. (N.Y.), 194:1 (2013), 8–20 | DOI | MR | Zbl

[7] M. I. Belishev, V. S. Mikhaylov, “Unified approach to classical equations of inverse problem theory”, J. Inverse and Ill-posed Problems, 20:4 (2012), 461–488 | DOI | MR | Zbl

[8] M. I. Belishev, S. A. Simonov, “A wave model of the Sturm–Liouville operator on the half-line”, Algebra i Analiz, 29:2 (2017), 3–33 | MR

[9] J. Behrndt, M. M. Malamud, H. Neidhart, “Scattering matrices and Weyl functions”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 568–598 | DOI | MR | Zbl

[10] V. A. Derkach, M. M. Malamud, “On the Weyl function and Hermite operators wit gaps”, Dokl. Akad. Nauk SSSR, 293:5 (1987), 1041–1046 | MR | Zbl

[11] I. M. Gel'fand, B. M. Levitan, Amer. Math. Soc. Transl. (2), 1 (1955), 253–304 | MR | MR | Zbl | Zbl

[12] A. N. Kocubei, “Extensions of symmetric operators and of symmetric binary relations”, Mat. Zametki, 17:1 (1975), 41–48 | MR | Zbl

[13] B. M. Levitan, Inverse Sturm-Liouville problems, VNU Science Press, Utreht, Netherlands, 1987 | MR | Zbl

[14] A. S. Mikhaylov, V. S. Mikhaylov, “Relationship between different types of inverse data for the one-dimensional Schrödinger operator on the half-line”, Zap. Nauchn. Semin. POMI, 451, 2016, 134–155 | MR

[15] A. S. Mikhaylov, V. S. Mikhaylov, “Quantum and acoustic scattering on $\mathbb R_+$ and a representation of the scattering matrix”, Proceeding of the conference IEEE, Days on Diffractions, 2017, 237–240

[16] V. Ryzhov, “A general boundary value problem and its Weyl function”, Opuscula Math., 27:2 (2007), 3005–331 | MR