@article{ZNSL_2017_461_a11,
author = {A. S. Mikhaylov and V. S. Mikhaylov},
title = {On an inverse dynamic problem for the wave equation with a~potential on a~real line},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {212--231},
year = {2017},
volume = {461},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a11/}
}
TY - JOUR AU - A. S. Mikhaylov AU - V. S. Mikhaylov TI - On an inverse dynamic problem for the wave equation with a potential on a real line JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 212 EP - 231 VL - 461 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a11/ LA - en ID - ZNSL_2017_461_a11 ER -
A. S. Mikhaylov; V. S. Mikhaylov. On an inverse dynamic problem for the wave equation with a potential on a real line. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 212-231. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a11/
[1] S. A. Avdonin, V. S. Mikhaylov, “The boundary control approach to inverse spectral theory”, Inverse Problems, 26:4 (2010), 045009, 19 pp. | DOI | MR | Zbl
[2] S. A. Avdonin, V. S. Mikhaylov, A. V. Rybkin, “The boundary control approach to the Titchmarsh–Weyl $m$-function”, Comm. Math. Phys., 275:3 (2007), 791–803 | DOI | MR | Zbl
[3] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl
[4] M. I. Belishev, “On relation between spectral and dynamical inverse data”, J. Inv. Ill-posed problems, 9:6 (2001), 647–665 | DOI | MR
[5] J. Math. Sci. (N. Y.), 127:6 (2005), 2353–2363 | DOI | MR | Zbl
[6] J. Math. Sci. (N.Y.), 194:1 (2013), 8–20 | DOI | MR | Zbl
[7] M. I. Belishev, V. S. Mikhaylov, “Unified approach to classical equations of inverse problem theory”, J. Inverse and Ill-posed Problems, 20:4 (2012), 461–488 | DOI | MR | Zbl
[8] M. I. Belishev, S. A. Simonov, “A wave model of the Sturm–Liouville operator on the half-line”, Algebra i Analiz, 29:2 (2017), 3–33 | MR
[9] J. Behrndt, M. M. Malamud, H. Neidhart, “Scattering matrices and Weyl functions”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 568–598 | DOI | MR | Zbl
[10] V. A. Derkach, M. M. Malamud, “On the Weyl function and Hermite operators wit gaps”, Dokl. Akad. Nauk SSSR, 293:5 (1987), 1041–1046 | MR | Zbl
[11] I. M. Gel'fand, B. M. Levitan, Amer. Math. Soc. Transl. (2), 1 (1955), 253–304 | MR | MR | Zbl | Zbl
[12] A. N. Kocubei, “Extensions of symmetric operators and of symmetric binary relations”, Mat. Zametki, 17:1 (1975), 41–48 | MR | Zbl
[13] B. M. Levitan, Inverse Sturm-Liouville problems, VNU Science Press, Utreht, Netherlands, 1987 | MR | Zbl
[14] A. S. Mikhaylov, V. S. Mikhaylov, “Relationship between different types of inverse data for the one-dimensional Schrödinger operator on the half-line”, Zap. Nauchn. Semin. POMI, 451, 2016, 134–155 | MR
[15] A. S. Mikhaylov, V. S. Mikhaylov, “Quantum and acoustic scattering on $\mathbb R_+$ and a representation of the scattering matrix”, Proceeding of the conference IEEE, Days on Diffractions, 2017, 237–240
[16] V. Ryzhov, “A general boundary value problem and its Weyl function”, Opuscula Math., 27:2 (2007), 3005–331 | MR