On an inverse dynamic problem for the wave equation with a~potential on a~real line
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 212-231
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the inverse dynamic problem for the wave equation with a potential on a real line. The forward initial-boundary value problem is set up with a help of boundary triplets. As an inverse data we use an analog of a response operator (dynamic Dirichlet-to-Neumann map). We derive equations of inverse problem and also point out the relationship between dynamic inverse problem and spectral inverse problem from a matrix-valued measure.
@article{ZNSL_2017_461_a11,
author = {A. S. Mikhaylov and V. S. Mikhaylov},
title = {On an inverse dynamic problem for the wave equation with a~potential on a~real line},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {212--231},
publisher = {mathdoc},
volume = {461},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a11/}
}
TY - JOUR AU - A. S. Mikhaylov AU - V. S. Mikhaylov TI - On an inverse dynamic problem for the wave equation with a~potential on a~real line JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 212 EP - 231 VL - 461 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a11/ LA - en ID - ZNSL_2017_461_a11 ER -
A. S. Mikhaylov; V. S. Mikhaylov. On an inverse dynamic problem for the wave equation with a~potential on a~real line. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 212-231. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a11/