Wave field near a narrow convex impedance cone completely illuminated by a plane incident wave
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 195-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An acoustic incident plane wave completely illuminates a narrow convex cone with impedance boundary condition on its surface. The wave field at far distances from the vertex of the cone and in some close neighbourhood of the cone's surface is asymptotically computed.
@article{ZNSL_2017_461_a10,
     author = {M. A. Lyalinov and S. V. Polianskaya},
     title = {Wave field near a~narrow convex impedance cone completely illuminated by a~plane incident wave},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {195--211},
     year = {2017},
     volume = {461},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a10/}
}
TY  - JOUR
AU  - M. A. Lyalinov
AU  - S. V. Polianskaya
TI  - Wave field near a narrow convex impedance cone completely illuminated by a plane incident wave
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 195
EP  - 211
VL  - 461
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a10/
LA  - ru
ID  - ZNSL_2017_461_a10
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%A S. V. Polianskaya
%T Wave field near a narrow convex impedance cone completely illuminated by a plane incident wave
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 195-211
%V 461
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a10/
%G ru
%F ZNSL_2017_461_a10
M. A. Lyalinov; S. V. Polianskaya. Wave field near a narrow convex impedance cone completely illuminated by a plane incident wave. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 195-211. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a10/

[1] V. M. Babich, M. A. Lyalinov, V. E. Grikurov, Diffraction Theory. The Sommerfeld-Malyuzhinets Technique, Alpha Science Ser. Wave Phenom., Alpha Science, Oxford, UK, 2008

[2] J.-M. L. Bernard, Méthode analytique et transformées fonctionnelles pour la diffraction d'ondes par une singularité conique: équation intégrale de noyau non oscillant pour le cas d'impédance constante, Rapport CEA-R-5764, Editions Dist-Saclay, 1997 ; “Erratum”, J. Phys A, 32 (1999), L43 ; “An extended version”, Advanced Theory of Diffraction by a Semi-infinite Impedance Cone, Alpha Science Ser Wave Phenom., Alpha Science, Oxford, UK, 2014 | Zbl | DOI | MR | Zbl

[3] J.-M. L. Bernard, M. A. Lyalinov, “Diffraction of acoustic waves by an impedance cone of an arbitrary cross-section”, Wave Motion, 33 (2001), 155–181, erratum: p. 177 replace $O(1/\cos(\pi(\nu-b)))$ by $O(\nu^d\sin(\pi\nu)/\cos(\pi(\nu-b)))$ | DOI | MR | Zbl

[4] M. A. Lyalinov, N. Y. Zhu, Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions, Mario Boella Series on Electromagnetism in Information Communication, SciTech-IET USA, Edison, NJ, 2013

[5] V. M. Babich, “Diffraction of a plane wave by a narrow angle cone in the case of the Dirichlet boundary conditions”, J. Math. Sci., 86:3 (1997), 2657–2663 | DOI | MR | Zbl

[6] I. V. Andronov, “Difraktsiya na uzkom konuse pri naklonnom padenii”, Zap. nauchn. semin. POMI, 451, 2016, 5–13 | MR

[7] M. A. Lyalinov, “Acoustic scattering by a semi-infinite angular sector with impedance boundary conditions”, IMA Journ., 2017, submitted

[8] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products, 4th ed., Academic Press, Orlando, 1980 | MR | Zbl

[9] M. A. Lyalinov, “Scattering of acoustic waves by a sector”, Wave Motion, 50 (2013), 739–762 | DOI | MR