@article{ZNSL_2017_461_a1,
author = {I. V. Baybulov and A. M. Budylin and S. B. Levin},
title = {Few one-dimensional quantum particles scattering problem. {The} structure and asymptotics of the resolvent kernel limit values},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {14--51},
year = {2017},
volume = {461},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a1/}
}
TY - JOUR AU - I. V. Baybulov AU - A. M. Budylin AU - S. B. Levin TI - Few one-dimensional quantum particles scattering problem. The structure and asymptotics of the resolvent kernel limit values JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 14 EP - 51 VL - 461 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a1/ LA - ru ID - ZNSL_2017_461_a1 ER -
%0 Journal Article %A I. V. Baybulov %A A. M. Budylin %A S. B. Levin %T Few one-dimensional quantum particles scattering problem. The structure and asymptotics of the resolvent kernel limit values %J Zapiski Nauchnykh Seminarov POMI %D 2017 %P 14-51 %V 461 %U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a1/ %G ru %F ZNSL_2017_461_a1
I. V. Baybulov; A. M. Budylin; S. B. Levin. Few one-dimensional quantum particles scattering problem. The structure and asymptotics of the resolvent kernel limit values. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 14-51. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a1/
[1] A. M. Budylin, V. S. Buslaev, “Reflection operator and their applications to asymptotic investigations of semiclassical integral equations”, Adv. Soviet Math., 7:6 (1991), 79–103 | MR
[2] E. Mourre, “Absence of singular continuous spectrum for certain self-adjoint operators”, Commun. Math. Phys., 78 (1981), 391–408 | DOI | MR | Zbl
[3] L. D. Faddeev, Mathematical aspects of the three-body problem of the quantum scattering theory, Daniel Davey and Co., Inc., 1965 | MR
[4] P. Perry, I. M. Sigal, B. Simon, “Spectral analysis of $N$-body Schrödinger operators”, Ann. Math., 114 (1981), 519–567 | DOI | MR | Zbl
[5] V. S. Buslaev, S. B. Levin, P. Neittaanmäki, T. Ojala, “New approach to numerical computatio of the eigenfunctions of the continuous spectrum of three-particle Schrödinger operator: I. One-dimensional particles, short-range pair potentials”, J. Phys. A: Math. Theor., 43 (2010), 285205, 17 pp. | DOI | MR | Zbl
[6] V. S. Buslaev, S. B. Levin, “Behavior of the Eigenfunctions of the Many-particle Shrödinger Operator. I. One-dimentional Particles”, Amer. Math. Soc. Transl., 225:2 (2008), 55–71 | MR | Zbl
[7] V. S. Buslaev, S. P. Merkuriev, S. P. Salicov, “O difraktsionnom kharaktere rasseyaniya v kvantovoi sisteme trekh odnomernykh chastits”, Problemy matem. fiziki, 9, Leningr. Universitet, Leningrad, 1979, 14–30
[8] V. S. Buslaev, S. P. Merkuriev, S. P. Salicov, “Opisanie parnykh potentsialov, dlya kotorykh rasseyanie v sisteme trekh odnomernykh chastits svobodno ot difraktsionnykh effektov. Granichnye zadachi matematicheskoi fiziki i smezhnye voprosy v teorii funktsii”, Zap. Nauchn. Sem. LOMI, 84, 1979, 16–22 | MR | Zbl
[9] A. M. Budylin, V. C. Buslaev, “Kvaziklassicheskaya asimptotika rezolventy integralnogo operatora svërtki s sinus-yadrom na konechnom intervale”, Algebra i Analiz, 7:6 (1995), 79–103 | MR | Zbl
[10] D. R. Yafaev, Matematicheskaya teoriya tasseyaniya, SPbGU, 1994 | MR
[11] I. M. Gelfand, N. Ya. Vilenkin, Nekotorye primeneniya garmonicheskogo analiza. Osnaschënnye gilbertovy prostranstva, Obobschënnye funktsii, 4, FM, 1961 | MR
[12] K. Moren, Metody gilbertova prostranstva, Mir, 1965 | MR
[13] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 3, Teoriya Rasseyaniya, Mir, 1982 | MR
[14] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, 1982 | MR
[15] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, 1985 | MR