Few one-dimensional quantum particles scattering problem. The structure and asymptotics of the resolvent kernel limit values
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 14-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The present work offers a new approach to the construction of the coordinate asymptotics of the Schrödinger operator resolvent kernel in the scattering problem of three one-dimensional quantum particles with short-range pair potentials. Within the framework of this approach the asymptotics of the absolutely continuous spectrum eigenfunctions of the Schrödinger operator can be constructed. In the work the possibility of the generalization of the suggested approach for the case of scattering problem of $N$ particles with arbitrary masses is discussed.
@article{ZNSL_2017_461_a1,
     author = {I. V. Baybulov and A. M. Budylin and S. B. Levin},
     title = {Few one-dimensional quantum particles scattering problem. {The} structure and asymptotics of the resolvent kernel limit values},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {14--51},
     year = {2017},
     volume = {461},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a1/}
}
TY  - JOUR
AU  - I. V. Baybulov
AU  - A. M. Budylin
AU  - S. B. Levin
TI  - Few one-dimensional quantum particles scattering problem. The structure and asymptotics of the resolvent kernel limit values
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 14
EP  - 51
VL  - 461
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a1/
LA  - ru
ID  - ZNSL_2017_461_a1
ER  - 
%0 Journal Article
%A I. V. Baybulov
%A A. M. Budylin
%A S. B. Levin
%T Few one-dimensional quantum particles scattering problem. The structure and asymptotics of the resolvent kernel limit values
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 14-51
%V 461
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a1/
%G ru
%F ZNSL_2017_461_a1
I. V. Baybulov; A. M. Budylin; S. B. Levin. Few one-dimensional quantum particles scattering problem. The structure and asymptotics of the resolvent kernel limit values. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 47, Tome 461 (2017), pp. 14-51. http://geodesic.mathdoc.fr/item/ZNSL_2017_461_a1/

[1] A. M. Budylin, V. S. Buslaev, “Reflection operator and their applications to asymptotic investigations of semiclassical integral equations”, Adv. Soviet Math., 7:6 (1991), 79–103 | MR

[2] E. Mourre, “Absence of singular continuous spectrum for certain self-adjoint operators”, Commun. Math. Phys., 78 (1981), 391–408 | DOI | MR | Zbl

[3] L. D. Faddeev, Mathematical aspects of the three-body problem of the quantum scattering theory, Daniel Davey and Co., Inc., 1965 | MR

[4] P. Perry, I. M. Sigal, B. Simon, “Spectral analysis of $N$-body Schrödinger operators”, Ann. Math., 114 (1981), 519–567 | DOI | MR | Zbl

[5] V. S. Buslaev, S. B. Levin, P. Neittaanmäki, T. Ojala, “New approach to numerical computatio of the eigenfunctions of the continuous spectrum of three-particle Schrödinger operator: I. One-dimensional particles, short-range pair potentials”, J. Phys. A: Math. Theor., 43 (2010), 285205, 17 pp. | DOI | MR | Zbl

[6] V. S. Buslaev, S. B. Levin, “Behavior of the Eigenfunctions of the Many-particle Shrödinger Operator. I. One-dimentional Particles”, Amer. Math. Soc. Transl., 225:2 (2008), 55–71 | MR | Zbl

[7] V. S. Buslaev, S. P. Merkuriev, S. P. Salicov, “O difraktsionnom kharaktere rasseyaniya v kvantovoi sisteme trekh odnomernykh chastits”, Problemy matem. fiziki, 9, Leningr. Universitet, Leningrad, 1979, 14–30

[8] V. S. Buslaev, S. P. Merkuriev, S. P. Salicov, “Opisanie parnykh potentsialov, dlya kotorykh rasseyanie v sisteme trekh odnomernykh chastits svobodno ot difraktsionnykh effektov. Granichnye zadachi matematicheskoi fiziki i smezhnye voprosy v teorii funktsii”, Zap. Nauchn. Sem. LOMI, 84, 1979, 16–22 | MR | Zbl

[9] A. M. Budylin, V. C. Buslaev, “Kvaziklassicheskaya asimptotika rezolventy integralnogo operatora svërtki s sinus-yadrom na konechnom intervale”, Algebra i Analiz, 7:6 (1995), 79–103 | MR | Zbl

[10] D. R. Yafaev, Matematicheskaya teoriya tasseyaniya, SPbGU, 1994 | MR

[11] I. M. Gelfand, N. Ya. Vilenkin, Nekotorye primeneniya garmonicheskogo analiza. Osnaschënnye gilbertovy prostranstva, Obobschënnye funktsii, 4, FM, 1961 | MR

[12] K. Moren, Metody gilbertova prostranstva, Mir, 1965 | MR

[13] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 3, Teoriya Rasseyaniya, Mir, 1982 | MR

[14] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, 1982 | MR

[15] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, 1985 | MR