The existence of root subgroup translated by a given element into its opposite
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 32, Tome 460 (2017), pp. 190-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Phi$ be a simply-laced root system, $K$ an algebraically closed field, $G=G_\mathrm{ad}(\Phi,K)$ the adjoint group of type $\Phi$ over $K$. Then for every non-trivial element $g\in G$ there exists a root element $x$ of the Lie algebra of $G$ such that $x$ and $gx$ are opposite.
@article{ZNSL_2017_460_a8,
     author = {I. M. Pevzner},
     title = {The existence of root subgroup translated by a~given element into its opposite},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {190--202},
     year = {2017},
     volume = {460},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a8/}
}
TY  - JOUR
AU  - I. M. Pevzner
TI  - The existence of root subgroup translated by a given element into its opposite
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 190
EP  - 202
VL  - 460
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a8/
LA  - ru
ID  - ZNSL_2017_460_a8
ER  - 
%0 Journal Article
%A I. M. Pevzner
%T The existence of root subgroup translated by a given element into its opposite
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 190-202
%V 460
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a8/
%G ru
%F ZNSL_2017_460_a8
I. M. Pevzner. The existence of root subgroup translated by a given element into its opposite. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 32, Tome 460 (2017), pp. 190-202. http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a8/

[1] A. Borel, “Svoistva i lineinye predstavleniya grupp Shevalle.”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59

[2] N. Burbaki, Gruppy i algebry Li, Glavy IV–VI, Mir, M., 1972 | MR

[3] N. Burbaki, Gruppy i algebry Li, Glavy VII–VIII, Mir, M., 1978 | MR

[4] N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Gruppa Shevalle tipa $\mathrm E_6$ v $27$-mernom predstavlenii”, Zap. nauchn. semin. POMI, 338, 2006, 5–68 | MR | Zbl

[5] N. A. Vavilov, I. M. Pevzner, “Troiki dlinnykh kornevykh podgrupp”, Zap. nauchn. semin. POMI, 343, 2007, 54–83 | MR

[6] N. A. Vavilov, A. A. Semenov, “Dlinnye kornevye tory v gruppakh Shevalle”, Algebra i analiz, 24:3 (2012), 22–83 | MR | Zbl

[7] A. Yu. Luzgarev, I. M. Pevzner, “Nekotorye fakty iz zhizni $\mathrm{GL}(5,\mathbb Z)$”, Zap. nauchn. semin. POMI, 305, 2003, 153–162 | MR | Zbl

[8] O. O'Mira, “Lektsii o lineinykh gruppakh”, Avtomorfizmy klassicheskikh grupp, Mir, M., 1976, 57–167

[9] O. O'Mira, Lektsii o simplekticheskikh gruppakh, Mir, M., 1979

[10] I. M. Pevzner, “Geometriya kornevykh elementov v gruppakh tipa $\mathrm E_6$”, Algebra i analiz, 23:3 (2011), 261–309 | MR | Zbl

[11] I. M. Pevzner, “Shirina grupp tipa $\mathrm E_6$ otnositelno mnozhestva kornevykh elementov, I”, Algebra i analiz, 23:5 (2011), 155–198 | MR

[12] I. M. Pevzner, “Shirina grupp tipa $\mathrm E_6$ otnositelno mnozhestva kornevykh elementov, II”, Zap. nauchn. semin. POMI, 386, 2011, 242–264

[13] I. M. Pevzner, “Shirina gruppy $\mathrm{GL}(6,K)$ otnositelno mnozhestva kvazikornevykh elementov”, Zap. nauchn. semin. POMI, 423, 2014, 183–204 | MR

[14] I. M. Pevzner, “Shirina ekstraspetsialnogo unipotentnogo radikala otnositelno mnozhestva kornevykh elementov”, Zap. nauchn. semin. POMI, 435, 2015, 168–177 | MR

[15] T. A. Springer, “Lineinye algebraicheskie gruppy”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. problemy mat. Fundam. napravleniya, 55, VINITI, M., 1989, 5–136 | MR | Zbl

[16] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR

[17] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980

[18] Dzh. Khamfri, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[19] A. Cohen, A. Steinbach, R. Ushirobira, D. Wales, “Lie algebras generated by extremal elements”, J. Algebra, 236:1 (2001), 122–154 | DOI | MR | Zbl

[20] J. Dieudonné, “Sur les générateurs des groupes classiques”, Summa Brasil. Math., 3 (1955), 149–178 | MR | Zbl

[21] T. A. Springer, Linear algebraic groups, Progress in Mathematics, 9, Birkhäuser Boston Inc., Boston, 1998 | MR | Zbl