When the group ring of a simple finite group is serial
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 32, Tome 460 (2017), pp. 168-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A ring is called serial, if its right and left regular modules are the direct sums of chain modules. In the article, we give an answer on the question, for which simple finite groups, their group rings over a given field are serial.
@article{ZNSL_2017_460_a7,
     author = {A. V. Kukharev and I. B. Kaygorodov and I. B. Gorshkov},
     title = {When the group ring of a~simple finite group is serial},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--189},
     year = {2017},
     volume = {460},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a7/}
}
TY  - JOUR
AU  - A. V. Kukharev
AU  - I. B. Kaygorodov
AU  - I. B. Gorshkov
TI  - When the group ring of a simple finite group is serial
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 168
EP  - 189
VL  - 460
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a7/
LA  - ru
ID  - ZNSL_2017_460_a7
ER  - 
%0 Journal Article
%A A. V. Kukharev
%A I. B. Kaygorodov
%A I. B. Gorshkov
%T When the group ring of a simple finite group is serial
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 168-189
%V 460
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a7/
%G ru
%F ZNSL_2017_460_a7
A. V. Kukharev; I. B. Kaygorodov; I. B. Gorshkov. When the group ring of a simple finite group is serial. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 32, Tome 460 (2017), pp. 168-189. http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a7/

[1] J. L. Alperin, Local Representation Theory, Cambridge University Press, 1989 | MR

[2] Y. Baba, K. Oshiro, Classical Artinian Rings and Related Topics, World Scientific Publ., 2009 | MR | Zbl

[3] Y. Benson, Representations and Cohomology, v. I, Cambridge Studies in Advanced Mathematics, 30, 1995 | MR

[4] H. I. Blau, “On Brauer stars”, J. Algebra, 90 (1984), 169–188 | DOI | MR | Zbl

[5] W. Bosma, J. Cannon, C. Playoust, “The MAGMA algebra system I: The user language”, J. Symbolic Comput., 24 (1997), 235–265 | DOI | MR | Zbl

[6] R. Burkhardt, “Die Zerlegungsmatrizen der Gruppen $\mathrm{PSL}(2,p^f)$”, J. Algebra, 40 (1976), 75–96 | DOI | MR | Zbl

[7] R. Burkhardt, “Über die Zerlegungszahlen der Suzukigruppen $\mathrm{Sz}(q)$”, J. Algebra, 59:2 (1979), 421–433 | DOI | MR | Zbl

[8] J. H. Conway (et al.), Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, 1985 | MR | Zbl

[9] H. Dietrich, C. R. Leedham-Green, F. Lübeck, E. A. O'Brien, “Constructive recognition of classical groups in even characteristic”, J. Algebra, 391 (2013), 227–255 | DOI | MR | Zbl

[10] D. Eisenbud, P. Griffith, “Serial rings”, J. Algebra, 17 (1971), 389–400 | DOI | MR | Zbl

[11] W. Feit, “Possible Brauer trees”, Illinois J. Math., 28 (1984), 43–56 | MR | Zbl

[12] P. Fong, B. Srinivasan, “Brauer trees in classical groups”, J. Algebra, 131 (1990), 179–225 | DOI | MR | Zbl

[13] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.8, , 2017 http://www.gap-system.org

[14] M. Geck, “Irreducible Brauer characters of the 3-dimensional unitary group in non-defining characteristic”, Comm. Algebra, 18:2 (1990), 563–584 | DOI | MR | Zbl

[15] R. Gow, “Products of two involutions in classical groups of characteristic 2”, J. Algebra, 71 (1981), 583–591 | DOI | MR | Zbl

[16] D. G. Higman, “Indecomposable representations at characteristic $p$”, Duke Math. J., 21 (1954), 377–381 | DOI | MR | Zbl

[17] G. Hiss, “The Brauer trees of the Ree groups”, Comm. Algebra, 19:3 (1991), 871–888 | DOI | MR | Zbl

[18] G. Hiss, K. Lux, Brauer Trees of Sporadic Groups, Clarendon Press, Oxford, 1989 | MR | Zbl

[19] G. J. Janusz, “Indecomposable modules for finite groups”, Annals of Math., 89 (1969), 209–241 | DOI | MR | Zbl

[20] A. Kukharev, G. Puninski, “Serial group rings of finite groups. $p$-solvability”, Algebra Discr. Math., 16:2 (2013), 201–216 | MR | Zbl

[21] A. Kukharev, G. Puninski, “Serial group rings of finite groups. General linear and close groups”, Algebra Discrete Math., 20:1 (2015), 115–125 | MR | Zbl

[22] K. Lux, H. Pahlings, Representations of Groups. A Computational Approach, Cambridge Studies in Advanced Mathematics, 124, 2010 | MR | Zbl

[23] K. Morita, “On group rings over a modular field which possess radicals expressible as principal ideals”, Sci. Repts. Tokyo Daigaku, 4 (1951), 177–194 | MR | Zbl

[24] N. Naerig, “A construction of almost all Brauer trees”, J. Group Theory, 11 (2008), 813–829 | MR

[25] G. Puninski, Serial Rings, Kluwer, 2001 | MR | Zbl

[26] G. R. Robinson, “Some uses of class algebra constants”, J. Algebra, 91 (1984), 64–74 | DOI | MR | Zbl

[27] M. Sawabe, “A note on finite simple groups with abelian Sylow $p$-subgroups”, Tokyo Math. J., 30 (2007), 293–304 | DOI | MR | Zbl

[28] M. Sawabe, A. Watanabe, “On the principal blocks of finite groups with abelian Sylow $p$-subgroups”, J. Algebra, 237 (2001), 719–734 | DOI | MR | Zbl

[29] J. Scopes, “Cartan matrices and Morita equivalence for blocks of the symmetric groups”, J. Algebra, 142 (1991), 441–455 | DOI | MR | Zbl

[30] B. Srinivasan, “On the indecomposable representations of a certain class of groups”, Proc. Lond. Math. Soc., 10 (1960), 497–513 | DOI | MR | Zbl

[31] M. Stather, “Constructive Sylow theorems for the classical groups”, J. Algebra, 316 (2007), 536–559 | DOI | MR | Zbl

[32] A. A. Tuganbaev, Ring Theory, Arithmetical Rings and Modules, Independent University, Moscow, 2009

[33] H. Wielandt, “Sylowgruppen and Kompositions-Struktur”, Abhand. Math. Sem. Hamburg, 22 (1958), 215–228 | DOI | MR | Zbl

[34] Yu. V. Volkov, A. V. Kukharev, G. E. Puninskii, “Polutsepnost gruppovogo koltsa konechnoi gruppy zavisit tolko ot kharakteristiki polya”, Zap. nauchn. semin. POMI, 423, 2014, 57–66 | MR

[35] A. V. Kukharev, G. E. Puninskii, “Polutsepnye gruppovye koltsa konechnykh grupp. $p$-nilpotentnost”, Zap. nauchn. semin. POMI, 413, 2013, 134–152 | MR

[36] A. V. Kukharev, G. E. Puninskii, “Polutsepnost gruppovykh kolets znakoperemennykh i simmetricheskikh grupp”, Vestnik BGU, ser. matem.-inform., 2014, no. 2, 61–64

[37] A. V. Kukharev, “Polutsepnost gruppovykh kolets unimodulyarnykh proektivnykh grupp”, Sbornik rabot 71-i nauchn. konf. stud. i aspir. Belorus. gos. un-ta (Minsk, 18–21 maya 2014 g.), Ch. 1, 11–14

[38] A. V. Kukharev, G. E. Puninskii, “Polutsepnye gruppovye koltsa konechnykh grupp. Sporadicheskie prostye gruppy i gruppy Sudzuki”, Zap. nauchn. semin. POMI, 435, 2015, 73–94 | MR

[39] A. V. Kukharev, G. E. Puninskii, “Polutsepnye gruppovye koltsa klassicheskikh grupp, opredelennykh nad polyami s nechetnym chislom elementov”, Zap. nauchn. semin. POMI, 452, 2016, 158–176 | MR

[40] A. V. Kukharev, G. E. Puninskii, “Polutsepnye gruppovye koltsa prostykh konechnykh grupp lieva tipa”, Fundam. prikl. matem., 21:1 (2016), 135–144 | MR

[41] U. Feit, Teoriya predstavlenii konechnykh grupp, Nauka, M., 1990 | MR