@article{ZNSL_2017_460_a7,
author = {A. V. Kukharev and I. B. Kaygorodov and I. B. Gorshkov},
title = {When the group ring of a~simple finite group is serial},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {168--189},
year = {2017},
volume = {460},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a7/}
}
A. V. Kukharev; I. B. Kaygorodov; I. B. Gorshkov. When the group ring of a simple finite group is serial. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 32, Tome 460 (2017), pp. 168-189. http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a7/
[1] J. L. Alperin, Local Representation Theory, Cambridge University Press, 1989 | MR
[2] Y. Baba, K. Oshiro, Classical Artinian Rings and Related Topics, World Scientific Publ., 2009 | MR | Zbl
[3] Y. Benson, Representations and Cohomology, v. I, Cambridge Studies in Advanced Mathematics, 30, 1995 | MR
[4] H. I. Blau, “On Brauer stars”, J. Algebra, 90 (1984), 169–188 | DOI | MR | Zbl
[5] W. Bosma, J. Cannon, C. Playoust, “The MAGMA algebra system I: The user language”, J. Symbolic Comput., 24 (1997), 235–265 | DOI | MR | Zbl
[6] R. Burkhardt, “Die Zerlegungsmatrizen der Gruppen $\mathrm{PSL}(2,p^f)$”, J. Algebra, 40 (1976), 75–96 | DOI | MR | Zbl
[7] R. Burkhardt, “Über die Zerlegungszahlen der Suzukigruppen $\mathrm{Sz}(q)$”, J. Algebra, 59:2 (1979), 421–433 | DOI | MR | Zbl
[8] J. H. Conway (et al.), Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, 1985 | MR | Zbl
[9] H. Dietrich, C. R. Leedham-Green, F. Lübeck, E. A. O'Brien, “Constructive recognition of classical groups in even characteristic”, J. Algebra, 391 (2013), 227–255 | DOI | MR | Zbl
[10] D. Eisenbud, P. Griffith, “Serial rings”, J. Algebra, 17 (1971), 389–400 | DOI | MR | Zbl
[11] W. Feit, “Possible Brauer trees”, Illinois J. Math., 28 (1984), 43–56 | MR | Zbl
[12] P. Fong, B. Srinivasan, “Brauer trees in classical groups”, J. Algebra, 131 (1990), 179–225 | DOI | MR | Zbl
[13] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.8, , 2017 http://www.gap-system.org
[14] M. Geck, “Irreducible Brauer characters of the 3-dimensional unitary group in non-defining characteristic”, Comm. Algebra, 18:2 (1990), 563–584 | DOI | MR | Zbl
[15] R. Gow, “Products of two involutions in classical groups of characteristic 2”, J. Algebra, 71 (1981), 583–591 | DOI | MR | Zbl
[16] D. G. Higman, “Indecomposable representations at characteristic $p$”, Duke Math. J., 21 (1954), 377–381 | DOI | MR | Zbl
[17] G. Hiss, “The Brauer trees of the Ree groups”, Comm. Algebra, 19:3 (1991), 871–888 | DOI | MR | Zbl
[18] G. Hiss, K. Lux, Brauer Trees of Sporadic Groups, Clarendon Press, Oxford, 1989 | MR | Zbl
[19] G. J. Janusz, “Indecomposable modules for finite groups”, Annals of Math., 89 (1969), 209–241 | DOI | MR | Zbl
[20] A. Kukharev, G. Puninski, “Serial group rings of finite groups. $p$-solvability”, Algebra Discr. Math., 16:2 (2013), 201–216 | MR | Zbl
[21] A. Kukharev, G. Puninski, “Serial group rings of finite groups. General linear and close groups”, Algebra Discrete Math., 20:1 (2015), 115–125 | MR | Zbl
[22] K. Lux, H. Pahlings, Representations of Groups. A Computational Approach, Cambridge Studies in Advanced Mathematics, 124, 2010 | MR | Zbl
[23] K. Morita, “On group rings over a modular field which possess radicals expressible as principal ideals”, Sci. Repts. Tokyo Daigaku, 4 (1951), 177–194 | MR | Zbl
[24] N. Naerig, “A construction of almost all Brauer trees”, J. Group Theory, 11 (2008), 813–829 | MR
[25] G. Puninski, Serial Rings, Kluwer, 2001 | MR | Zbl
[26] G. R. Robinson, “Some uses of class algebra constants”, J. Algebra, 91 (1984), 64–74 | DOI | MR | Zbl
[27] M. Sawabe, “A note on finite simple groups with abelian Sylow $p$-subgroups”, Tokyo Math. J., 30 (2007), 293–304 | DOI | MR | Zbl
[28] M. Sawabe, A. Watanabe, “On the principal blocks of finite groups with abelian Sylow $p$-subgroups”, J. Algebra, 237 (2001), 719–734 | DOI | MR | Zbl
[29] J. Scopes, “Cartan matrices and Morita equivalence for blocks of the symmetric groups”, J. Algebra, 142 (1991), 441–455 | DOI | MR | Zbl
[30] B. Srinivasan, “On the indecomposable representations of a certain class of groups”, Proc. Lond. Math. Soc., 10 (1960), 497–513 | DOI | MR | Zbl
[31] M. Stather, “Constructive Sylow theorems for the classical groups”, J. Algebra, 316 (2007), 536–559 | DOI | MR | Zbl
[32] A. A. Tuganbaev, Ring Theory, Arithmetical Rings and Modules, Independent University, Moscow, 2009
[33] H. Wielandt, “Sylowgruppen and Kompositions-Struktur”, Abhand. Math. Sem. Hamburg, 22 (1958), 215–228 | DOI | MR | Zbl
[34] Yu. V. Volkov, A. V. Kukharev, G. E. Puninskii, “Polutsepnost gruppovogo koltsa konechnoi gruppy zavisit tolko ot kharakteristiki polya”, Zap. nauchn. semin. POMI, 423, 2014, 57–66 | MR
[35] A. V. Kukharev, G. E. Puninskii, “Polutsepnye gruppovye koltsa konechnykh grupp. $p$-nilpotentnost”, Zap. nauchn. semin. POMI, 413, 2013, 134–152 | MR
[36] A. V. Kukharev, G. E. Puninskii, “Polutsepnost gruppovykh kolets znakoperemennykh i simmetricheskikh grupp”, Vestnik BGU, ser. matem.-inform., 2014, no. 2, 61–64
[37] A. V. Kukharev, “Polutsepnost gruppovykh kolets unimodulyarnykh proektivnykh grupp”, Sbornik rabot 71-i nauchn. konf. stud. i aspir. Belorus. gos. un-ta (Minsk, 18–21 maya 2014 g.), Ch. 1, 11–14
[38] A. V. Kukharev, G. E. Puninskii, “Polutsepnye gruppovye koltsa konechnykh grupp. Sporadicheskie prostye gruppy i gruppy Sudzuki”, Zap. nauchn. semin. POMI, 435, 2015, 73–94 | MR
[39] A. V. Kukharev, G. E. Puninskii, “Polutsepnye gruppovye koltsa klassicheskikh grupp, opredelennykh nad polyami s nechetnym chislom elementov”, Zap. nauchn. semin. POMI, 452, 2016, 158–176 | MR
[40] A. V. Kukharev, G. E. Puninskii, “Polutsepnye gruppovye koltsa prostykh konechnykh grupp lieva tipa”, Fundam. prikl. matem., 21:1 (2016), 135–144 | MR
[41] U. Feit, Teoriya predstavlenii konechnykh grupp, Nauka, M., 1990 | MR