Simple $14$-dimensional Lie algebras in characteristic two
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 32, Tome 460 (2017), pp. 158-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Using the theory of deformations of Lie algebra $G_2$ we construct isomorphisms between the known simple $14$-dimensional Lie algebras over a field of even characteristic and Lie algebras of Cartan type of $S$ or $H$.
@article{ZNSL_2017_460_a6,
     author = {M. I. Kuznetsov and A. V. Kondrateva and N. G. Chebochko},
     title = {Simple $14$-dimensional {Lie} algebras in characteristic two},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {158--167},
     year = {2017},
     volume = {460},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a6/}
}
TY  - JOUR
AU  - M. I. Kuznetsov
AU  - A. V. Kondrateva
AU  - N. G. Chebochko
TI  - Simple $14$-dimensional Lie algebras in characteristic two
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 158
EP  - 167
VL  - 460
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a6/
LA  - ru
ID  - ZNSL_2017_460_a6
ER  - 
%0 Journal Article
%A M. I. Kuznetsov
%A A. V. Kondrateva
%A N. G. Chebochko
%T Simple $14$-dimensional Lie algebras in characteristic two
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 158-167
%V 460
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a6/
%G ru
%F ZNSL_2017_460_a6
M. I. Kuznetsov; A. V. Kondrateva; N. G. Chebochko. Simple $14$-dimensional Lie algebras in characteristic two. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 32, Tome 460 (2017), pp. 158-167. http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a6/

[1] H. Strade, Simple Lie algebras over fields of positive characteristic, v. I, de Gruyter Expositions in Mathematics, 38, Structure theory, de Gruyter, Berlin–Boston, 2004 | DOI | MR | Zbl

[2] H. Strade, Simple Lie Algebras over Fields of Positive Characteristic, v. II, de Gruyter Expositions in Mathematics, 42, Classifying the Absolute Toral Rank Two Case, de Gruyter, Berlin–Boston, 2009 | DOI | MR | Zbl

[3] H. Strade, Simple Lie algebras over fields of positive characteristic, v. 3, de Gruyter expositions in mathematics, 57, Completion of the classification, de Gruyter, Berlin–Boston, 2013 | MR | Zbl

[4] A. I. Kostrikin, I. R. Shafarevich, “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR, Ser. matem., 33:2 (1969), 251–322 | MR | Zbl

[5] N. G. Chebochko, M. I. Kuznetsov, “Integrable cocycles and global deformations of Lie algebra of type $G_2$ in characteristic 2”, Commun. Algebra, 45:7 (2017), 2969–2977 | DOI | MR | Zbl

[6] N. G. Chebochko, “Deformatsii klassicheskikh algebr Li s odnorodnoi sistemoi kornei v kharakteristike 2. I”, Matem. sbornik, 196:9 (2005), 125–156 | DOI | MR | Zbl

[7] A. N. Rudakov, “Deformatsii prostykh algebr Li”, Izv. AN SSSR. Ser. mat., 35:5 (1971), 1113–1119 | MR | Zbl

[8] A. I. Kostrikin, “Parametricheskoe semeistvo prostykh algebr Li”, Izv. AN SSSR. Ser. matem., 34:4 (1970), 744–756 | MR | Zbl

[9] A. I. Kostrikin, M. I. Kuznetsov, “O deformatsiyakh klassicheskikh algebr Li kharakteristiki tri”, Dokl. RAN, 343:3 (1995), 299–301 | MR | Zbl

[10] M. I. Kuznetsov, N. G. Chebochko, “Deformatsii klassicheskikh algebr Li”, Matem. sbornik, 191:8 (2000), 69–88 | DOI | MR | Zbl

[11] S. A. Kirillov, M. I. Kuznetsov, N. G. Chebochko, “O deformatsiyakh algebry Li tipa $G_2$ kharakteristiki tri”, Izv. vuzov. Mat., 2000, no. 3, 33–38 | MR | Zbl

[12] L. Lin, “Non-alternating hamiltonian algebra $P(n,m)$ of characteristic 2”, Commun. Algebra, 21:2 (1993), 399–411 | DOI | MR | Zbl

[13] G.-Y. Shen, “Variations of the classical lie algebra $G_2$ in low characteristics”, Nova J. Alg. Geom., 2:3 (1993), 217–243 | MR | Zbl

[14] D. E. Frohardt, R. L. Griess (Jr.), “Automorphisms of modular Lie algebras”, Nova J. Alg. Geom., 1 (1992), 339–345 | MR | Zbl

[15] M. I. Kuznetsov, A. V. Kondrateva, N. G. Chebochko, “O gamiltonovykh algebrakh Li kharakteristiki 2”, Matem. zhurnal, 16:2(60) (2016), 54–66

[16] G.-Y. Shen, “Lie algebras of CL type”, J. Algebra, 249 (2002), 95–109 | DOI | MR | Zbl