Metacyclic $2$-extensions with cyclic kernel and the ultrasolvability questions
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 32, Tome 460 (2017), pp. 114-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give a necessary and sufficient conditions for $2$-local ultrasolvability of the metacyclic extensions. Then we derive the ultrasolvability for an arbibrary group extension, which has a local ultrasolvable associated subextension of the second type. Finally, using the above reductions, we establish the ultrasolvability results for a wide class of non-split $2$-extensions with cyclic kernel.
@article{ZNSL_2017_460_a4,
     author = {D. D. Kiselev},
     title = {Metacyclic $2$-extensions with cyclic kernel and the ultrasolvability questions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--133},
     year = {2017},
     volume = {460},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a4/}
}
TY  - JOUR
AU  - D. D. Kiselev
TI  - Metacyclic $2$-extensions with cyclic kernel and the ultrasolvability questions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 114
EP  - 133
VL  - 460
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a4/
LA  - ru
ID  - ZNSL_2017_460_a4
ER  - 
%0 Journal Article
%A D. D. Kiselev
%T Metacyclic $2$-extensions with cyclic kernel and the ultrasolvability questions
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 114-133
%V 460
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a4/
%G ru
%F ZNSL_2017_460_a4
D. D. Kiselev. Metacyclic $2$-extensions with cyclic kernel and the ultrasolvability questions. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 32, Tome 460 (2017), pp. 114-133. http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a4/

[1] V. V. Ishkhanov, “O polupryamoi zadache pogruzheniya s nilpotentnym yadrom”, Izv. AN SSSR. Ser. mat., 40:1 (1976), 3–25 | MR | Zbl

[2] A. V. Yakovlev, “Zadacha pogruzheniya polei”, Izv. AN SSSR. Ser. mat., 28:3 (1964), 645–660 | MR | Zbl

[3] D. D. Kiselev, B. B. Lure, “Ultrarazreshimost i singulyarnost v probleme pogruzheniya”, Zap. nauchn. semin. POMI, 414, 2013, 113–126

[4] V. V. Ishkhanov, B. B. Lure, D. K. Faddeev, Zadacha pogruzheniya v teorii Galua, Nauka, M., 1990 | MR

[5] D. D. Kiselev, “Primery zadach pogruzheniya, u kotorykh resheniya tolko polya”, UMN, 68:4 (2013), 181–182 | DOI | MR | Zbl

[6] D. D. Kiselev, “Ob ultrarazreshimosti gruppovykh $p$-rasshirenii abelevoi gruppy s pomoschyu tsiklicheskogo yadra”, Zap. nauchn. semin. POMI, 452, 2016, 108–131 | MR

[7] D. D. Kiselev, I. A. Chubarov, “Ob ultrarazreshimosti nekotorykh klassov minimalnykh nepolupryamykh $p$-rasshirenii s tsiklicheskim yadrom dlya $p>2$”, Zap. nauchn. semin. POMI, 452, 2016, 132–157 | MR

[8] D. D. Kiselev, “Minimal $p$-extensions and the embedding problem”, Communications in Algebra (to appear) | DOI | MR

[9] A. V. Yakovlev, “Ob ultrarazreshimykh zadachakh pogruzheniya dlya chislovykh polei”, Algebra i analiz, 27:6 (2015), 260–263 | MR

[10] D. D. Kiselev, “Ultrarazreshimye nakrytiya gruppy $Z_2$ gruppami $Z_8$, $Z_{16}$ i $Q_8$”, Zap. nauchn. semin. POMI, 435, 2015, 47–72 | MR

[11] V. V. Ishkhanov, B. B. Lure, “Zadacha pogruzheniya s neabelevym yadrom dlya lokalnykh polei”, Zap. nauchn. sem. POMI, 365, 2009, 172–181 | Zbl