@article{ZNSL_2017_460_a3,
author = {N. Gordeev and U. Rehmann},
title = {Double cosets of stabilizers of totally isotropic subspaces in a~special unitary {group~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {82--113},
year = {2017},
volume = {460},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a3/}
}
TY - JOUR AU - N. Gordeev AU - U. Rehmann TI - Double cosets of stabilizers of totally isotropic subspaces in a special unitary group II JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 82 EP - 113 VL - 460 UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a3/ LA - en ID - ZNSL_2017_460_a3 ER -
N. Gordeev; U. Rehmann. Double cosets of stabilizers of totally isotropic subspaces in a special unitary group II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 32, Tome 460 (2017), pp. 82-113. http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a3/
[1] N. Bourbaki, Éléments de Mathématique, Algebre Chapitres I–III, Herman, Paris, 1956 ; Chapitres VII–IX, Hermann, Paris, 1962 | MR | Zbl
[2] R. W. Carter, Finite Groups of Lie Type. Conjugacy classes and comlex characters, John Wiley and Sons, 1985 | MR
[3] N. Gordeev, U. Rehmann, “On linearly Kleiman groups”, Transform. Groups, 18:3 (2013), 685–709 | DOI | MR | Zbl
[4] N. Gordeev, U. Rehmann, “Double cosets of stabilizers of totally isotropic subspaces in a special unitary group. I”, Zap. Nauchn. Semin. POMI, 452, 2016, 86–107 | MR
[5] M.-A. Knuss, A. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions, AMS Colloquium Publications, 44, 1998 | MR
[6] V. Platonov, A. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, 1993 | MR
[7] Linear algebraic groups, T. A. Springer, 9, Second edition, Boston, 1998 | MR | Zbl
[8] J. Tits, “Classification of algebraic semisimple groups”, Proc. Symp. Pure Math., 9 (1966), 33–62 | DOI | MR | Zbl