On stably biserial algebras and the Auslander–Reiten conjecture for special biserial algebras
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 32, Tome 460 (2017), pp. 5-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

By a result claimed by Pogorzały selfinjective special biserial algebras can be stably equivalent only to stably biserial algebras and these two classes coincide. By an example of Ariki, Iijima and Park the classes of stably biserial and selfinjective special biserial algebras do not coincide. In these notes we provide a detailed proof of the fact that a selfinjective special biserial algebra can be stably equivalent only to a stably biserial algebra following some ideas from the paper by Pogorzały. We will analyse the structure of symmetric stably biserial algebras and show that in characteristic $\neq2$ the classes of symmetric special biserial (Brauer graph) algebras and symmetric stably biserial algebras indeed coincide. Also, we provide a proof of the Auslander–Reiten conjecture for special biserial algebras.
@article{ZNSL_2017_460_a0,
     author = {M. A. Antipov and A. O. Zvonareva},
     title = {On stably biserial algebras and the {Auslander{\textendash}Reiten} conjecture for special biserial algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--34},
     year = {2017},
     volume = {460},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a0/}
}
TY  - JOUR
AU  - M. A. Antipov
AU  - A. O. Zvonareva
TI  - On stably biserial algebras and the Auslander–Reiten conjecture for special biserial algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 5
EP  - 34
VL  - 460
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a0/
LA  - en
ID  - ZNSL_2017_460_a0
ER  - 
%0 Journal Article
%A M. A. Antipov
%A A. O. Zvonareva
%T On stably biserial algebras and the Auslander–Reiten conjecture for special biserial algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 5-34
%V 460
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a0/
%G en
%F ZNSL_2017_460_a0
M. A. Antipov; A. O. Zvonareva. On stably biserial algebras and the Auslander–Reiten conjecture for special biserial algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 32, Tome 460 (2017), pp. 5-34. http://geodesic.mathdoc.fr/item/ZNSL_2017_460_a0/

[1] T. Adachi, T. Aihara, A. Chan, Classification of two-term tilting complexes over Brauer graph algebras, 2015, arXiv: 1504.04827 | MR

[2] T. Aihara, “Derived equivalences between symmetric special biserial algebras”, J. Pure App. Algebra, 219:5 (2015), 1800–1825 | DOI | MR | Zbl

[3] J. Math. Sci., 147:5 (2007), 6981–6994 | DOI | MR

[4] J. Math. Sci., 202:3 (2014), 333–345 | DOI | MR | Zbl

[5] S. Ariki, K. Iijima, E. Park, “Representation type of finite quiver Hecke algebras of type $A_l^{(1)}$ for arbitrary parameters”, Int. Math. Research Notices, 15 (2015), 6070–6135 | DOI | MR | Zbl

[6] M. Auslander, I. Reiten, “Representation theory of artin algebras. V: Invariants given by almost split sequences”, Commun. Algebra, 5:5 (1977), 519–554 | DOI | MR | Zbl

[7] M. Auslander, I. Reiten, “Representation theory of artin algebras. VI: A functorial approach to almost split sequences”, Commun. Algebra, 6:3 (1978), 257–300 | DOI | MR | Zbl

[8] M. C. R. Butler, C. M. Ringel, “Auslander–Reiten sequences with few middle terms and applications to string algebras”, Commun. Algebra, 15:1–2 (1987), 145–179 | DOI | MR | Zbl

[9] M. Kauer, “Derived equivalence of graph algebras”, Contemp. Math., 229 (1998), 201–214 | DOI | MR

[10] R. J. Marsh, S. Schroll, “The geometry of Brauer graph algebras and cluster mutations”, J. Algebra, 419 (2014), 141–166 | DOI | MR | Zbl

[11] R. Martínez-Villa, “Algebras stably equivalent to $l$-hereditary”, Representation theory, v. II, Lect. Notes Math., 832, 1980, 396–431 | DOI | MR | Zbl

[12] R. Martínez-Villa, “Properties that are left invariant under stable equivalence”, Commun. Algebra, 18:12 (1990), 4141–4169 | MR | Zbl

[13] I. Muchtadi-Alamsyah, “Braid action on derived category Nakayama algebras”, Commun. Algebra, 36:7 (2008), 2544–2569 | DOI | MR | Zbl

[14] Z. Pogorzały, “Algebras stably equivalent to selfinjective special biserial algebras”, Commun. Algebra, 22:4 (1994), 1127–1160 | DOI | MR | Zbl

[15] Z. Pogorzały, “On the stable Grothendieck groups”, Representations of Algebras, CMS Conference Proceedings, 14, 1993, 393–406 | MR | Zbl

[16] J. Rickard, M. Schaps, “Folded tilting complexes for Brauer tree algebras”, Adv. Math., 171:2 (2002), 169–182 | DOI | MR | Zbl

[17] R. Rouquier, A. Zimmermann, “Picard groups for derived module categories”, Proc. London Math. Soc., 87:1 (2003), 197–225 | DOI | MR | Zbl

[18] M. Schaps, E. Zakay-Illouz, “Pointed Brauer trees”, J. Algebra, 246:2 (2001), 647–672 | DOI | MR | Zbl

[19] S. Schroll, “Trivial extensions of gentle algebras and Brauer graph algebras”, J. Algebra, 444 (2015), 183–200 | DOI | MR | Zbl

[20] A. Skowroński, J. Waschbüsch, “Representation-finite biserial algebras”, J. für die reine und angewandte Math., 345 (1983), 172–181 | MR | Zbl

[21] Y. Volkov, A. Zvonareva, “Derived Picard groups of selfinjective Nakayama algebras”, Manuscripta Math., 152:1–2 (2017), 199–222 | DOI | MR | Zbl

[22] B. Wald, J. Waschbüsch, “Tame biserial algebras”, J. Algebra, 95:2 (1985), 480–500 | DOI | MR | Zbl

[23] A. Zimmermann, “Self-equivalences of the derived category of Brauer tree algebras with exceptional vertex”, Analele Ştiinţifice ale Universităţii Ovidius, 9:1 (2001), 139–148 | MR | Zbl

[24] A. Zvonareva, “Mutations and the derived Picard group of the Brauer star algebra”, J. Algebra, 443 (2015), 270–299 | DOI | MR | Zbl

[25] A. Zvonareva, “Two-term tilting complexes over Brauer tree algebras”, Zap. Nauchn. Semin. POMI, 423, 2014, 132–165 | MR