$LlogL$-integrability of the velocity gradient for Stokes system with drifts in $L_\infty (BMO^{-1})$
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 46, Tome 459 (2017), pp. 37-57
Cet article a éte moissonné depuis la source Math-Net.Ru
For any weak solution of the Stokes system with drifts in $L_\infty (BMO^{-1})$, we prove a reverse Hölder inequality and $LlogL$-higher integrability of the velocity gradients.
@article{ZNSL_2017_459_a2,
author = {J. Burczak and G. Seregin},
title = {$LlogL$-integrability of the velocity gradient for {Stokes} system with drifts in $L_\infty (BMO^{-1})$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {37--57},
year = {2017},
volume = {459},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_459_a2/}
}
TY - JOUR
AU - J. Burczak
AU - G. Seregin
TI - $LlogL$-integrability of the velocity gradient for Stokes system with drifts in $L_\infty (BMO^{-1})$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2017
SP - 37
EP - 57
VL - 459
UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_459_a2/
LA - en
ID - ZNSL_2017_459_a2
ER -
J. Burczak; G. Seregin. $LlogL$-integrability of the velocity gradient for Stokes system with drifts in $L_\infty (BMO^{-1})$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 46, Tome 459 (2017), pp. 37-57. http://geodesic.mathdoc.fr/item/ZNSL_2017_459_a2/