$LlogL$-integrability of the velocity gradient for Stokes system with drifts in $L_\infty (BMO^{-1})$
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 46, Tome 459 (2017), pp. 37-57

Voir la notice de l'article provenant de la source Math-Net.Ru

For any weak solution of the Stokes system with drifts in $L_\infty (BMO^{-1})$, we prove a reverse Hölder inequality and $LlogL$-higher integrability of the velocity gradients.
@article{ZNSL_2017_459_a2,
     author = {J. Burczak and G. Seregin},
     title = {$LlogL$-integrability of the velocity gradient for {Stokes} system with drifts in $L_\infty (BMO^{-1})$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {37--57},
     publisher = {mathdoc},
     volume = {459},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_459_a2/}
}
TY  - JOUR
AU  - J. Burczak
AU  - G. Seregin
TI  - $LlogL$-integrability of the velocity gradient for Stokes system with drifts in $L_\infty (BMO^{-1})$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 37
EP  - 57
VL  - 459
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_459_a2/
LA  - en
ID  - ZNSL_2017_459_a2
ER  - 
%0 Journal Article
%A J. Burczak
%A G. Seregin
%T $LlogL$-integrability of the velocity gradient for Stokes system with drifts in $L_\infty (BMO^{-1})$
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 37-57
%V 459
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_459_a2/
%G en
%F ZNSL_2017_459_a2
J. Burczak; G. Seregin. $LlogL$-integrability of the velocity gradient for Stokes system with drifts in $L_\infty (BMO^{-1})$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 46, Tome 459 (2017), pp. 37-57. http://geodesic.mathdoc.fr/item/ZNSL_2017_459_a2/