Convergence in the H\"older space of the solutions of the problems for the parabolic equations with two small parameters in a~boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 46, Tome 459 (2017), pp. 7-36
Voir la notice de l'article provenant de la source Math-Net.Ru
Multidimensional two-phase problem for the parabolic equations with two small parameters $\varepsilon>0$ and $\kappa>0$ at the principal terms in the conjugation condition is studied in the Hölder space. An estimate of the perturbed term – time derivative is derived. Its proved that the solution of the problem converges as $\varepsilon>0$ the solution of the problem as $\kappa\to0$, $\varepsilon>0$; $\varepsilon\to0$, $\kappa>0$; $\varepsilon=0$, $\kappa\to0$ without loss of the smoothness of the given functions.
@article{ZNSL_2017_459_a1,
author = {G. I. Bizhanova},
title = {Convergence in the {H\"older} space of the solutions of the problems for the parabolic equations with two small parameters in a~boundary},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--36},
publisher = {mathdoc},
volume = {459},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_459_a1/}
}
TY - JOUR AU - G. I. Bizhanova TI - Convergence in the H\"older space of the solutions of the problems for the parabolic equations with two small parameters in a~boundary JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 7 EP - 36 VL - 459 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_459_a1/ LA - ru ID - ZNSL_2017_459_a1 ER -
%0 Journal Article %A G. I. Bizhanova %T Convergence in the H\"older space of the solutions of the problems for the parabolic equations with two small parameters in a~boundary %J Zapiski Nauchnykh Seminarov POMI %D 2017 %P 7-36 %V 459 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2017_459_a1/ %G ru %F ZNSL_2017_459_a1
G. I. Bizhanova. Convergence in the H\"older space of the solutions of the problems for the parabolic equations with two small parameters in a~boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 46, Tome 459 (2017), pp. 7-36. http://geodesic.mathdoc.fr/item/ZNSL_2017_459_a1/