Weighted modules and capacities on a~Riemann surface
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 164-217
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			On a Riemann surface (in the wide sense of the word in the terminology of Hurwitz–Courant) the weighted capacity and module (with a weight of Muokenhoupt) of a condenser with a finite number plates are defined. The equality of the capacity and module of a condenser is proved. This has solved one Dubinin's problem.
			
            
            
            
          
        
      @article{ZNSL_2017_458_a9,
     author = {P. A. Pugach and V. A. Shlyk},
     title = {Weighted modules and capacities on {a~Riemann} surface},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {164--217},
     publisher = {mathdoc},
     volume = {458},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a9/}
}
                      
                      
                    P. A. Pugach; V. A. Shlyk. Weighted modules and capacities on a~Riemann surface. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 164-217. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a9/