Weighted modules and capacities on a~Riemann surface
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 164-217

Voir la notice de l'article provenant de la source Math-Net.Ru

On a Riemann surface (in the wide sense of the word in the terminology of Hurwitz–Courant) the weighted capacity and module (with a weight of Muokenhoupt) of a condenser with a finite number plates are defined. The equality of the capacity and module of a condenser is proved. This has solved one Dubinin's problem.
@article{ZNSL_2017_458_a9,
     author = {P. A. Pugach and V. A. Shlyk},
     title = {Weighted modules and capacities on {a~Riemann} surface},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {164--217},
     publisher = {mathdoc},
     volume = {458},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a9/}
}
TY  - JOUR
AU  - P. A. Pugach
AU  - V. A. Shlyk
TI  - Weighted modules and capacities on a~Riemann surface
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 164
EP  - 217
VL  - 458
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a9/
LA  - ru
ID  - ZNSL_2017_458_a9
ER  - 
%0 Journal Article
%A P. A. Pugach
%A V. A. Shlyk
%T Weighted modules and capacities on a~Riemann surface
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 164-217
%V 458
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a9/
%G ru
%F ZNSL_2017_458_a9
P. A. Pugach; V. A. Shlyk. Weighted modules and capacities on a~Riemann surface. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 164-217. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a9/