Weighted modules and capacities on a Riemann surface
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 164-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

On a Riemann surface (in the wide sense of the word in the terminology of Hurwitz–Courant) the weighted capacity and module (with a weight of Muokenhoupt) of a condenser with a finite number plates are defined. The equality of the capacity and module of a condenser is proved. This has solved one Dubinin's problem.
@article{ZNSL_2017_458_a9,
     author = {P. A. Pugach and V. A. Shlyk},
     title = {Weighted modules and capacities on {a~Riemann} surface},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {164--217},
     year = {2017},
     volume = {458},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a9/}
}
TY  - JOUR
AU  - P. A. Pugach
AU  - V. A. Shlyk
TI  - Weighted modules and capacities on a Riemann surface
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 164
EP  - 217
VL  - 458
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a9/
LA  - ru
ID  - ZNSL_2017_458_a9
ER  - 
%0 Journal Article
%A P. A. Pugach
%A V. A. Shlyk
%T Weighted modules and capacities on a Riemann surface
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 164-217
%V 458
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a9/
%G ru
%F ZNSL_2017_458_a9
P. A. Pugach; V. A. Shlyk. Weighted modules and capacities on a Riemann surface. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 164-217. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a9/

[1] V. V. Aseev, B. Yu. Sultanov, Moduli polikondensatorov i izomorfizmy prostranstv sledov nepreryvnykh funtsii klassa $W_n^1$, Preprint, AN SSSR, Sib. otd., In-t matematiki, Novosibirsk, 1989

[2] G. V. Kuzmina, “Obschaya teorema koeffitsientov Dzhenkinsa i metod modulei semeistv krivykh”, Zap. nauchn. sem. POMI, 429, 2014, 140–156

[3] V. N. Dubinin, “Metody geometricheskoi teorii funktsii v klassicheskikh i sovremennykh zadachakh dlya polinomov”, UMN, 67:4 (2012), 3–88 | DOI | MR | Zbl

[4] V. N. Dubinin, “Proizvodnaya Shvartsa i pokrytie dug puchka okruzhnostei golomorfnymi funktsiyami”, Mat. zametki, 98:6 (2015), 865–871 | DOI | MR | Zbl

[5] V. Dubinin, “Some unsolved problems about condenser capacities on the plane”, New Trends and Open Problems in Complex Analysis and Dynamical Systems, Trends in Mathematics (to appear)

[6] A. Gurvits, R. Kurant, Teoriya funktsii, M., 1968 | MR

[7] S. Stoilov, Lektsii o topologicheskikh printsipakh teorii analiticheskikh funktsii, Nauka, 1964 | MR

[8] P. Pugach, V. Shlyk, “Moduli, capacity, BV-functions on the Riemann surfaces”, Lobachevskii J. Math., 38:2 (2017), 338–351 | DOI | MR | Zbl

[9] M. Ohtsuka, Extremal length and precise functions, GAKUTO international series, Gakkōtosho, 2003 | MR | Zbl

[10] G. Federer, Geometricheskaya teoriya mery, M., 1987 | MR

[11] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, M., 1977 | MR

[12] B. Fuglede, “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl

[13] L. K. Evans, R. F. Gariepi, Teoriya mery i tonkie svoistva funktsii, Novosibirsk, 2002

[14] O. Forster, Rimanovy poverkhnosti, M., 1980 | MR

[15] W. P. Ziemer, “Extremal length and conformal capacity”, Trans. Amer. Math. Soc., 126:3 (1967), 460–473 | DOI | MR | Zbl

[16] V. A. Zorich, Matematicheskii analiz, Chast I, M., 1981 | MR

[17] M. A. Evgrafov, Analiticheskie funktsii, M., 1968 | MR

[18] A. V. Sychev, Moduli i prostranstvennye kvazikonformnye otobrazheniya, Novosibirsk, 1983 | MR