On cubic exponential sums and Gauss sums
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 159-163

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $e_q$ be a nontrivial additive character of a finite field $\mathbb F_q$ of order $q\equiv1\pmod3$, and let $\psi$ be a cubic multiplicative character of $\mathbb F_q$, $\psi(0)=0$. Consider the cubic Gauss sum and the cubic exponential sum \begin{equation*} G(\psi)=\sum_{z\in\mathbb F_q}e_q(z)\psi(z),\quad C(w)=\sum_{z\in\mathbb F_q}e_q\Bigl(\frac{z^3}w-3z\Bigr),\quad w\in\mathbb F_q\quad w\neq0. \end{equation*} For all nonzero $a,b\in\mathbb F_q$, $ab\neq0$, it is proved that \begin{equation*} \frac1q\sum_nC(an)C(bn)\psi(n)+\frac1q\psi(ab)G(\psi)^2=\bar\psi(ab)\psi(a-b)\overline{G(\psi)}, \end{equation*} where summation runs over all nonzero $n\in\mathbb F_q$.
@article{ZNSL_2017_458_a8,
     author = {N. V. Proskurin},
     title = {On cubic exponential sums and {Gauss} sums},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {159--163},
     publisher = {mathdoc},
     volume = {458},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a8/}
}
TY  - JOUR
AU  - N. V. Proskurin
TI  - On cubic exponential sums and Gauss sums
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 159
EP  - 163
VL  - 458
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a8/
LA  - ru
ID  - ZNSL_2017_458_a8
ER  - 
%0 Journal Article
%A N. V. Proskurin
%T On cubic exponential sums and Gauss sums
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 159-163
%V 458
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a8/
%G ru
%F ZNSL_2017_458_a8
N. V. Proskurin. On cubic exponential sums and Gauss sums. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 159-163. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a8/