On cubic exponential sums and Gauss sums
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 159-163
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $e_q$ be a nontrivial additive character of a finite field $\mathbb F_q$ of order $q\equiv1\pmod3$, and let $\psi$ be a cubic multiplicative character of $\mathbb F_q$, $\psi(0)=0$. Consider the cubic Gauss sum and the cubic exponential sum
\begin{equation*}
G(\psi)=\sum_{z\in\mathbb F_q}e_q(z)\psi(z),\quad C(w)=\sum_{z\in\mathbb F_q}e_q\Bigl(\frac{z^3}w-3z\Bigr),\quad w\in\mathbb F_q\quad w\neq0.
\end{equation*}
For all nonzero $a,b\in\mathbb F_q$, $ab\neq0$, it is proved that
\begin{equation*}
\frac1q\sum_nC(an)C(bn)\psi(n)+\frac1q\psi(ab)G(\psi)^2=\bar\psi(ab)\psi(a-b)\overline{G(\psi)},
\end{equation*}
where summation runs over all nonzero $n\in\mathbb F_q$.
@article{ZNSL_2017_458_a8,
author = {N. V. Proskurin},
title = {On cubic exponential sums and {Gauss} sums},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {159--163},
publisher = {mathdoc},
volume = {458},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a8/}
}
N. V. Proskurin. On cubic exponential sums and Gauss sums. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 159-163. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a8/