Local Pisot matricies and mutual approximations of algebraic numbers
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 104-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A further development of the simplex-modular algorithm for decomposition of algebraic numbers into multidimensional continued fractions is proposed. With this aim we construct localized Pisot matrices . They have moduli of all eigenvalues less than 1 fall into the interval of small length. Such Pisot matrices generate continued fractions with the best approximations.
@article{ZNSL_2017_458_a6,
     author = {V. G. Zhuravlev},
     title = {Local {Pisot} matricies and mutual approximations of algebraic numbers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--134},
     year = {2017},
     volume = {458},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a6/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Local Pisot matricies and mutual approximations of algebraic numbers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 104
EP  - 134
VL  - 458
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a6/
LA  - ru
ID  - ZNSL_2017_458_a6
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Local Pisot matricies and mutual approximations of algebraic numbers
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 104-134
%V 458
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a6/
%G ru
%F ZNSL_2017_458_a6
V. G. Zhuravlev. Local Pisot matricies and mutual approximations of algebraic numbers. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 104-134. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a6/

[1] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauchn. semin. POMI, 449, 2016, 168–195 | MR

[2] V. Brun, “Algorithmes euclidiens pour trois et quatre nombres”, Treizieme congres des mathematiciens scandinaves (Helsinki, 18–23 août 1957), Mercators Tryckeri, Helsinki, 1958, 45–64 | MR

[3] E. S. Selmer, “Continued fractions in several dimensions”, Nordisk Nat. Tidskr., 9, 1961, 37–43 | MR | Zbl

[4] A. Nogueira, “The three-dimensional Poincare continued fraction algorithm”, Israel J. Math., 90:1–3 (1995), 373–401 | DOI | MR | Zbl

[5] F. Schweiger, Multidimensional Continued Fraction, Oxford Univ. Press, New York, 2000 | MR

[6] V. Berthe, S. Labbe, “Factor complexity of S-adic words generated by the Arnoux–Rauzy–Poincare algorithm”, Adv. in Appl. Math., 63 (2015), 90–130 | DOI | MR | Zbl

[7] P. Arnoux, S. Labbe, On some symmetric multidimensional continued fraction algorithms, August 2015, arXiv: 1508.07814

[8] J. Cassaigne, “Un algorithme de fractions continues de complexite lineaire”, DynA3S meeting, LIAFA, Paris, October 2015

[9] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Tr. MIAN, 299, 2017, 283–303 | DOI

[10] Dzh. V. S. Kassels, Vvedenie v teoriyu diofantovykh priblizhenii, M., 1961 | MR

[11] A. Ya. Khinchin, Tsepnye drobi, 4-oe izd., M., 1978 | MR

[12] J. Lagarias, “Best simultaneous Diophantine approximations. I. Groth rates of best approximation denomimators”, Trans. Amer. Math. Soc., 272:2 (1982), 545–554 | MR | Zbl

[13] N. G. Moshchevitin, On some open problems in Diophantine approximation, Dec. 2012, 42 pp., arXiv: 1202.4539v5[math.NT]

[14] N. Chevallier, “Best Simultaneous Diophantine Approximations and Multidimensional Continued Fraction Expansions”, Moscow J. Comb. Number Theory, 3:3 (2013), 3–56 | MR | Zbl

[15] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, 2-oe izd., M., 1972 | MR

[16] I. M. Vinogradov, Osnovy teorii chisel, 8-oe izd., M., 1972 | MR