Local Pisot matricies and mutual approximations of algebraic numbers
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 104-134
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A further development of the simplex-modular algorithm for decomposition of algebraic numbers into multidimensional continued fractions is proposed. With this aim we construct localized Pisot matrices . They have moduli of all eigenvalues less than 1 fall into the interval of small length. Such Pisot matrices generate continued fractions with the best approximations.
			
            
            
            
          
        
      @article{ZNSL_2017_458_a6,
     author = {V. G. Zhuravlev},
     title = {Local {Pisot} matricies and mutual approximations of algebraic numbers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--134},
     publisher = {mathdoc},
     volume = {458},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a6/}
}
                      
                      
                    V. G. Zhuravlev. Local Pisot matricies and mutual approximations of algebraic numbers. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 104-134. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a6/