@article{ZNSL_2017_458_a6,
author = {V. G. Zhuravlev},
title = {Local {Pisot} matricies and mutual approximations of algebraic numbers},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {104--134},
year = {2017},
volume = {458},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a6/}
}
V. G. Zhuravlev. Local Pisot matricies and mutual approximations of algebraic numbers. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 104-134. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a6/
[1] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauchn. semin. POMI, 449, 2016, 168–195 | MR
[2] V. Brun, “Algorithmes euclidiens pour trois et quatre nombres”, Treizieme congres des mathematiciens scandinaves (Helsinki, 18–23 août 1957), Mercators Tryckeri, Helsinki, 1958, 45–64 | MR
[3] E. S. Selmer, “Continued fractions in several dimensions”, Nordisk Nat. Tidskr., 9, 1961, 37–43 | MR | Zbl
[4] A. Nogueira, “The three-dimensional Poincare continued fraction algorithm”, Israel J. Math., 90:1–3 (1995), 373–401 | DOI | MR | Zbl
[5] F. Schweiger, Multidimensional Continued Fraction, Oxford Univ. Press, New York, 2000 | MR
[6] V. Berthe, S. Labbe, “Factor complexity of S-adic words generated by the Arnoux–Rauzy–Poincare algorithm”, Adv. in Appl. Math., 63 (2015), 90–130 | DOI | MR | Zbl
[7] P. Arnoux, S. Labbe, On some symmetric multidimensional continued fraction algorithms, August 2015, arXiv: 1508.07814
[8] J. Cassaigne, “Un algorithme de fractions continues de complexite lineaire”, DynA3S meeting, LIAFA, Paris, October 2015
[9] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Tr. MIAN, 299, 2017, 283–303 | DOI
[10] Dzh. V. S. Kassels, Vvedenie v teoriyu diofantovykh priblizhenii, M., 1961 | MR
[11] A. Ya. Khinchin, Tsepnye drobi, 4-oe izd., M., 1978 | MR
[12] J. Lagarias, “Best simultaneous Diophantine approximations. I. Groth rates of best approximation denomimators”, Trans. Amer. Math. Soc., 272:2 (1982), 545–554 | MR | Zbl
[13] N. G. Moshchevitin, On some open problems in Diophantine approximation, Dec. 2012, 42 pp., arXiv: 1202.4539v5[math.NT]
[14] N. Chevallier, “Best Simultaneous Diophantine Approximations and Multidimensional Continued Fraction Expansions”, Moscow J. Comb. Number Theory, 3:3 (2013), 3–56 | MR | Zbl
[15] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, 2-oe izd., M., 1972 | MR
[16] I. M. Vinogradov, Osnovy teorii chisel, 8-oe izd., M., 1972 | MR