Fractional-linear invariance of the symplex-module algorithm for decomposition in multidimensional continued fractions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 77-103
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the simplex-module algorithm one can decompose real numbers $\alpha=(\alpha_1,\dots,\alpha_d)$ into multidimensional continued fractions. We verified the invariance of this algorithm under fractional-linear transformations $\alpha'=(\alpha'_1,\dots,\alpha'_d)=U\langle\alpha\rangle$ with matrices $U$ in the unimodular group $\mathrm{GL}_{d+1}(\mathbb Z)$, and prove the conservation of a linear recurrence and the approximation order for convergent fractions to the transformed $\alpha'$.
@article{ZNSL_2017_458_a5,
author = {V. G. Zhuravlev},
title = {Fractional-linear invariance of the symplex-module algorithm for decomposition in multidimensional continued fractions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {77--103},
publisher = {mathdoc},
volume = {458},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a5/}
}
TY - JOUR AU - V. G. Zhuravlev TI - Fractional-linear invariance of the symplex-module algorithm for decomposition in multidimensional continued fractions JO - Zapiski Nauchnykh Seminarov POMI PY - 2017 SP - 77 EP - 103 VL - 458 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a5/ LA - ru ID - ZNSL_2017_458_a5 ER -
%0 Journal Article %A V. G. Zhuravlev %T Fractional-linear invariance of the symplex-module algorithm for decomposition in multidimensional continued fractions %J Zapiski Nauchnykh Seminarov POMI %D 2017 %P 77-103 %V 458 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a5/ %G ru %F ZNSL_2017_458_a5
V. G. Zhuravlev. Fractional-linear invariance of the symplex-module algorithm for decomposition in multidimensional continued fractions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 77-103. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a5/