Fractional-linear invariance of multidimensional continued fractions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 42-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

With the help of the simplex-karyon algorithm it is possible to decompose real numbers $\alpha=(\alpha_1,\dots,\alpha_d)$ into multidimensional continued fractions. We prove the invariance of this algorithm under fractional-linear transformations $\alpha'=(\alpha'_1,\dots,\alpha'_d)=U\langle\alpha\rangle$ with matrices $U$ from the unimodular group $\mathrm{GL}_{d+1}(\mathbb Z)$. The best convergent fractions of the transformed $\alpha'$ are found.
@article{ZNSL_2017_458_a4,
     author = {V. G. Zhuravlev},
     title = {Fractional-linear invariance of multidimensional continued fractions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {42--76},
     year = {2017},
     volume = {458},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a4/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Fractional-linear invariance of multidimensional continued fractions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 42
EP  - 76
VL  - 458
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a4/
LA  - ru
ID  - ZNSL_2017_458_a4
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Fractional-linear invariance of multidimensional continued fractions
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 42-76
%V 458
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a4/
%G ru
%F ZNSL_2017_458_a4
V. G. Zhuravlev. Fractional-linear invariance of multidimensional continued fractions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 42-76. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a4/

[1] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Tr. MIAN, 299, 2017, 283–303 | DOI

[2] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauch. semin. POMI, 449, 2016, 168–195 | MR

[3] V. G. Zhuravlev, “Dvumernye priblizheniya metodom delyaschikhsya toricheskikh razbienii”, Zap. nauch. semin. POMI, 440, 2015, 81–98 | MR

[4] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii tora i mnogomernye priblizheniya algebraicheskikh chisel”, Zap. nauch. semin. POMI, 445, 2016, 33–92 | MR

[5] V. Brun, “Algorithmes euclidiens pour trois et quatre nombres”, Treizieme congres des mathematiciens scandinaves (Helsinki, 18–23 août 1957), Mercators Tryckeri, Helsinki, 1958, 45–64 | MR

[6] E. S. Selmer, “Continued fractions in several dimensions”, Nordisk Nat. Tidskr., 9, 1961, 37–43 | MR | Zbl

[7] A. Nogueira, “The three-dimensional Poincare continued fraction algorithm”, Israel J. Math., 90:1–3 (1995), 373–401 | DOI | MR | Zbl

[8] F. Schweiger, Multidimensional Continued Fraction, Oxford Univ. Press, New York, 2000 | MR

[9] V. Berthe, S. Labbe, “Factor complexity of S-adic words generated by the Arnoux–Rauzy–Poincare algorithm”, Adv. in Appl. Math., 63 (2015), 90–130 | DOI | MR | Zbl

[10] P. Arnoux, S. Labbe, On some symmetric multidimensional continued fraction algorithms, August 2015, arXiv: 1508.07814

[11] J. Cassaigne, “Un algorithme de fractions continues de complexite lineaire”, DynA3S meeting, LIAFA, Paris, October 2015

[12] I. M. Vinogradov, Osnovy teorii chisel, 5-oe izd., M., 1972 | MR