Fractional-linear invariance of multidimensional continued fractions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 42-76
Voir la notice de l'article provenant de la source Math-Net.Ru
With the help of the simplex-karyon algorithm it is possible to decompose real numbers $\alpha=(\alpha_1,\dots,\alpha_d)$ into multidimensional continued fractions. We prove the invariance of this algorithm under fractional-linear transformations $\alpha'=(\alpha'_1,\dots,\alpha'_d)=U\langle\alpha\rangle$ with matrices $U$ from the unimodular group $\mathrm{GL}_{d+1}(\mathbb Z)$. The best convergent fractions of the transformed $\alpha'$ are found.
@article{ZNSL_2017_458_a4,
author = {V. G. Zhuravlev},
title = {Fractional-linear invariance of multidimensional continued fractions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {42--76},
publisher = {mathdoc},
volume = {458},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a4/}
}
V. G. Zhuravlev. Fractional-linear invariance of multidimensional continued fractions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 42-76. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a4/