Modules of families of vector measures on a~Riemann surface
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 31-41

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Riemann surface in the broad sense of the term in the Hurwitz–Courant terminology and an open set with a compact closure on this surface. In this paper, it is established that a family of vector measures can be associated with a condenser on a given open set, following the Aikawa–Ohtsuka, whose modules are calculated directly with the help of a weighted capacity (with Muckenhoupt weight) of the given condenser.
@article{ZNSL_2017_458_a3,
     author = {Yu. V. Dymchenko and V. A. Shlyk},
     title = {Modules of families of vector measures on {a~Riemann} surface},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {31--41},
     publisher = {mathdoc},
     volume = {458},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a3/}
}
TY  - JOUR
AU  - Yu. V. Dymchenko
AU  - V. A. Shlyk
TI  - Modules of families of vector measures on a~Riemann surface
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2017
SP  - 31
EP  - 41
VL  - 458
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a3/
LA  - ru
ID  - ZNSL_2017_458_a3
ER  - 
%0 Journal Article
%A Yu. V. Dymchenko
%A V. A. Shlyk
%T Modules of families of vector measures on a~Riemann surface
%J Zapiski Nauchnykh Seminarov POMI
%D 2017
%P 31-41
%V 458
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a3/
%G ru
%F ZNSL_2017_458_a3
Yu. V. Dymchenko; V. A. Shlyk. Modules of families of vector measures on a~Riemann surface. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 31-41. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a3/