@article{ZNSL_2017_458_a3,
author = {Yu. V. Dymchenko and V. A. Shlyk},
title = {Modules of families of vector measures on {a~Riemann} surface},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {31--41},
year = {2017},
volume = {458},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a3/}
}
Yu. V. Dymchenko; V. A. Shlyk. Modules of families of vector measures on a Riemann surface. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 31-41. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a3/
[1] A. Gurvits, R. Kurant, Teoriya funktsii, Nauka, 1968 | MR
[2] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR
[3] D. Milman, “O nekotorykh priznakakh regulyarnosti prostranstv tipa (V)”, DAN SSSR, 20 (1938), 243–246 | Zbl
[4] P. A. Pugach, V. A. Shlyk, “Vesovye moduli i emkosti na rimanovoi poverkhnosti”, Zap. nauchn. semin. POMI, 458, 2017, 164–217
[5] S. Stoilov, Lektsii o topologicheskikh printsipakh teorii analiticheskikh funktsii, Nauka, 1964 | MR
[6] D. Adams, L. Hedberg, Function Spaces and Potential Theory, Springer-Verlag, 1996 | MR
[7] H. Aikawa, M. Ohtsuka, “Extremal length of vector measures”, Ann. Acad. Sci. Fenn. Ser. A, 24 (1999), 61–88 | MR | Zbl
[8] K. Fan, “Minimax Theorems”, Proc. Nat. Acad. Sci. USA, 39:1 (1953), 42–47 | DOI | MR | Zbl
[9] M. Ohtsuka, Extremal length and precise functions, GAKUTO international series, Gakkōtosho, 2003 | MR | Zbl
[10] P. Pugach, V. Shlyk, “Moduli, capacity, BV-functions on the Riemann surfaces”, Lobachevskii J. Math., 38:2 (2017), 338–351 | DOI | MR | Zbl