@article{ZNSL_2017_458_a2,
author = {V. N. Dubinin},
title = {Lemniscate zone and distortion theorems for multivalent functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {17--30},
year = {2017},
volume = {458},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a2/}
}
V. N. Dubinin. Lemniscate zone and distortion theorems for multivalent functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 33, Tome 458 (2017), pp. 17-30. http://geodesic.mathdoc.fr/item/ZNSL_2017_458_a2/
[1] W. K. Hayman, Research Problems in Function Theory., The Athlone Press University of London, London, 1967 | MR | Zbl
[2] P. Erdos, Some of My Favorite Unsolved Problems., A Tribute to Paul Erdős, Cambridge Univ. Press, Cambridge, 1990 | MR
[3] A. Eremenko, L. Lempert, “An extremal problem for polynomials”, Proc. Amer. Math. Soc., 122:1 (1994), 191–193 | DOI | MR | Zbl
[4] A. Eremenko, “A Markov-type inequality for arbitrary plane continua”, Proc. Amer. Math. Soc., 135:5 (2007), 1505–1510 | DOI | MR | Zbl
[5] V. N. Dubinin, “Neravenstvo markovskogo tipa i nizhnyaya otsenka modulei kriticheskikh znachenii polinomov”, Dokl. RAN, 451:5 (2013), 495–497 | DOI | Zbl
[6] V. Dubinin, “Four-point distortion theorem for complex polynomials”, Complex Variables and Elliptic Equations, 59:1 (2014), 59–66 | DOI | MR | Zbl
[7] V. N. Dubinin, “Ob odnoi ekstremalnoi zadache dlya kompleksnykh polinomov s ogranicheniyami na ikh kriticheskie znacheniya”, Sib. mat. zh., 55:1 (2014), 79–89 | MR | Zbl
[8] V. N. Dubinin, “Kriticheskie znacheniya i moduli proizvodnoi v nulyakh kompleksnogo polinoma”, Zap. nauchn. semin. POMI, 449, 2016, 60–68 | MR
[9] V. N. Dubinin, “Ekstremalnaya zadacha dlya proizvodnoi ratsionalnoi funktsii”, Mat. zametki, 100:5 (2016), 732–738 | DOI | MR | Zbl
[10] V. N. Dubinin, “O logarifmicheskoi energii nulei i polyusov ratsionalnoi funktsii”, Sib. mat. zh., 57:6 (2016), 1255–1261 | DOI | MR | Zbl
[11] V. N. Dubinin, “Novaya versiya krugovoi simmetrizatsii s prilozheniyami k $p$-listnym funktsiyam”, Mat. sb., 203:7 (2012), 79–94 | DOI | MR | Zbl
[12] V. N. Dubinin, “Krugovaya simmetrizatsiya kondensatorov na rimanovykh poverkhnostyakh”, Mat. sb., 206:1 (2015), 69–96 | DOI | MR | Zbl
[13] V. N. Dubinin, A. S. Afanaseva-Grigoreva, “O lemniskatakh ratsionalnykh funktsii”, Dalnevostochnyi mat. zh., 17:2 (2017), 201–209
[14] V. N. Dubinin, “Simmetrizatsiya kondensatorov i neravenstva dlya mnogolistnykh v kruge funktsii”, Mat. zametki, 94:6 (2013), 846–856 | DOI | MR | Zbl
[15] V. N. Dubinin, “Teoremy iskazheniya dlya funktsii, $p$-listnykh v srednem po okruzhnosti”, Zap. nauchn. semin. POMI, 440, 2015, 43–56 | MR
[16] V. N. Dubinin, “Neravenstva dlya modulei funktsii, $p$-listnykh v srednem po okruzhnosti”, Zap. nauchn. semin. POMI, 429, 2014, 44–54
[17] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR
[18] A. B. Bogatyrev, “Chebyshëvskoe predstavlenie ratsionalnykh funktsii”, Mat. sb., 201:11 (2010), 19–40 | DOI | MR | Zbl
[19] A. B. Bogatyrev, How Many Zolotarev Fractions are There?, 2015, arXiv: 1511.05346 | MR
[20] M. M. Gkhashim, V. N. Malozemov, G. Sh. Tamasyan, Drobi Zolotareva, Seminar po konstruktivnomu negladkomu analizu i nedifferentsiruemoi optimizatsii “CNSA NDO”, , 2016 http://www.apmath.spbu.ru/cnsa/
[21] A. Gurvits, R. Kurant, Teoriya funktsii, M., 1968 | MR